scholarly journals Combustion chamber geometry and fuel supply system variations on fuel economy and exhaust emissions of GDI engine with EGR

2021 ◽  
pp. 358-358
Author(s):  
Shivakumar Nagareddy ◽  
Kumaresan Govindasamy

In this study, the combustion chamber geometry for spray-guided, wall-guided, and air-guided combustion strategies were fabricated. The piston crown shape and the cylinder head in each combustion chamber geometry was machined by fixing the fuel injector and spark plug at proper positions to obtain swirl, turbulence, and squish effects for better mixing of fuel with air and superior combustion of the mixture. Conducted tests on all the three modified gasoline direct injection engines with optimized exhaust gas recirculation and electronic control towards fuel injection timing, the fuel injection pressure, and the ignition timing for better the performance and emissions control. It is clear from the results that NOx emissions from all three combustion modes were reduced by 4.9% upto 50% of loads and it increase for higher loads due to increase of in-cylinder pressure. The fuel consumption and emissions showed better at 150 bar Fuel Injection Pressure for wall-guided combustion chamber geometry. Reduced HC emissions by 3.7% and 4.7%, reduced CO emissions by 2% and 3.3%, reduced Soot emissions by 6.12% and 10.6%. Reduces specific fuel consumption by about 10.3% and 13.3% in wall-guided combustion strategy compare with spray-guided and air-guided combustion modes respectively.

Author(s):  
Hoin Kang ◽  
Jerald A. Caton ◽  
Seangwock Lee ◽  
Seokhwan Lee ◽  
Seungmook Oh

LPG (Liquefied Petroleum Gas) has been widely used as an alternative fuel for gasoline and diesel vehicles in light of clean fuel and diversity of energy resources. But conventional LPG vehicles using carburetors or MPI fuel injection systems can’t satisfy the emissions regulations and CO2 targets of the future. Therefore, it is essential to develop LPG engines of spark ignition or compression ignition type such that LPG fuel is directly injected into the combustion chamber under high pressure. A compression ignition engine using LPG is the ideal engine with many advantages of fuel economy, heat efficiency and low CO2, even though it is difficult to develop due to the unique properties of LPG. This paper reports on numerical and experimental studies related to LPG fuel for a compression ignition engine. The numerical analysis is conducted to study the combustion chamber shape with CATIA and to analyze the spray and fluid behaviors with FLUENT for diesel and LPG (n-butane 100%) fuels. In one experimental study, a constant volume chamber is used to observe the spray formation for the chamber pressure 0 to 3MPa and to analyze the flame process, P-V diagram, heat release rate and emissions through the combustion of LPG fuel with the cetane additive DTBP (Di-tert-butyl peroxide) 5 to 15 wt% at 25MPa of fuel injection pressure. In engine bench tests, experiments were performed to find the optimum injection timing, lambda, COV and emissions for the LPG fuel with the cetane additive DTBP 5 to 15 wt% at 25MPa fuel injection pressure and 1500 rpm. The penetration distance of LPG (n-butane 100%) was shorter than that of diesel fuel and LPG was sensitive to the chamber pressure. The ignition delay was in inverse proportion to the ambient pressure linearly. In the engine bench tests, the optimum injection timing of the test engine to the LPG fuel with DTBP 15 wt% was about BTDC 12° CA at all loads and 1500 rpm. An increasing of DTBP blending ratio caused the promotion of flame and fast burn and this lead to reduce HC and CO emissions, on the other hand, to increase NOx and CO2 emissions.


Author(s):  
Ratnak Sok ◽  
Jin Kusaka

Abstract Injected gasoline into the O2-depleted environment in the recompression stroke can be converted into light hydrocarbons due to thermal cracking, partial oxidation, and water-gas shift reaction. These reformate species influence the combustion phenomena of gasoline direct injection homogeneous charge compression ignition (GDI-HCCI) engines. In this work, a production-based single-cylinder research engine was boosted to reach IMEPn = 0.55 MPa in which its indicated efficiency peaks at 40–41%. Experimentally, the main combustion phases are advanced under single-pulse direct fuel injection into the negative valve overlap (NVO) compared with that of the intake stroke. NVO peak in-cylinder pressures are lower than that of motoring, which emphasizes that endothermic reaction occurs during the interval. Low O2 concentration could play a role in this evaporative charge cooling effect. This phenomenon limits the oxidation reaction, and the thermal effect is not pronounced. For understanding the recompression reaction phenomena, 0D simulation with three different chemical reaction mechanisms is studied to clarify that influences of direct injection timing in NVO on combustion advancements are kinetically limited by reforming. The 0D results show the same increasing tendencies of classical reformed species of rich-mixture such as C3H6, C2H4, CH4, CO, and H2 as functions of injection timings. By combining these reformed species into the main fuel-air mixture, predicted ignition delays are shortened. The effects of the reformed species on the main combustion are confirmed by 3D-CFD calculation, and the results show that OH radical generation is advanced under NVO fuel injection compared with that of intake stroke conditions thus earlier heat release and cylinder pressure are noticeable. Also, parametric studies on injection pressure and double-pulse injections on engine combustion are performed experimentally.


2014 ◽  
Vol 26 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Dongmin Li ◽  
◽  
Jianzhong Zhang ◽  
Jianjun Yuan ◽  
FancanGuo ◽  
...  

In order to improve the measurement accuracy of fuel injection quantity based on Test Bench for fuel injection Pump (abbr. TB4P), on the basis of the function between needle valve lift and fuel injection quantity, two-level pressure adjustment module, which combines proportional flow rate valve with pressure sensor and takes advantage of spring of fuel injector, is used to control the outlet pressure of fuel injection pump, which results in the fuel injection pressure stably. Fuel injection pump and fuel injector are modeled by use of HCD of AMESim, and the system model of fuel injection quantity measurement is built. Simulation curve of fuel injection quantity is got by AMESim, which is compared with the curve of standard fuel injection quantity according to relative error. The results show that the relative error from the data of simulation system is smaller, so the methods of measurement and simulation in this paper are effective.


2014 ◽  
Vol 1044-1045 ◽  
pp. 299-304
Author(s):  
Ming Wei Xiao ◽  
Jun Han Zhang ◽  
Ting Ting Chen

The paper studied the effect of fuel injection pressure and fuel supply advance angle on characteristics of butanol diesel blend engine.First,the results shows that when the volume ratio of butanol diesel is constant ,the fuel consumption and HC emission are the least under 20°CA.With increase of fuel supply advance angle ,the exhaust smoke emission and CO emission decreased largely under high load, but NOX emission increased largely. When the fuel supply advance angle is constant ,with the increase of volume ratio of butanol diesel ,the fuel consumption increased gradually, the exhaust smoke emission decreased largely, HC emission increased clearly, CO emission decreased largely but NOX emission increased.Third,with increase of fuel injection pressure,the exhaust smoke emission decreased largely ,NOx emission changed a little ,CO and HC emission increased largely.


2017 ◽  
Vol 19 (3) ◽  
pp. 347-359 ◽  
Author(s):  
Felix Leach ◽  
Richard Stone ◽  
Dave Richardson ◽  
Andrew Lewis ◽  
Sam Akehurst ◽  
...  

Downsized, highly boosted, gasoline direct injection engines are becoming the preferred gasoline engine technology to ensure that increasingly stringent fuel economy and emissions legislation are met. The Ultraboost project engine is a 2.0-L in-line four-cylinder prototype engine, designed to have the same performance as a 5.0-L V8 naturally aspirated engine but with reduced fuel consumption. It is important to examine particle number emissions from such extremely highly boosted engines to ensure that they are capable of meeting current and future emissions legislation. The effect of such high boosting on particle number emissions is reported in this article for a variety of operating points and engine operating parameters. The effect of engine load, air–fuel ratio, fuel injection pressure, fuel injection timing, ignition timing, inlet air temperature, exhaust gas recirculation level, and exhaust back pressure has been investigated. It is shown that particle number emissions increase with increase in cooled, external exhaust gas recirculation and engine load, and decrease with increase in fuel injection pressure and inlet air temperature. Particle number emissions are shown to fall with increased exhaust back pressure, a key parameter for highly boosted engines. The effects of these parameters on the particle size distributions from the engine have also been evaluated. Significant changes to the particle size spectrum emitted from the engine are seen depending on the engine operating point. Operating points with a bias towards very small particle sizes were noted.


2020 ◽  
Vol 38 (4) ◽  
pp. 827-838
Author(s):  
Bambang Sudarmanta ◽  
Alham A.K. Mahanggi ◽  
Dori Yuvenda ◽  
Hary Soebagyo

Biodiesel, as a renewable fuel that has the potential to replace diesel fossil fuels. With properties in the form of viscosity, density, and surface tension, which are higher than diesel fossil fuel, biodiesel produces poor spray characteristics, and also the high cetane number and oxygen content so that the ignition delay is shorter causes the start of combustion will shift more forward, therefore need to improve injection parameters including injection pressure and timing. The aim of this research is to get the optimal injection parameter optimization so as to improve engine performances and emissions. The method used is to increase the fuel injection pressure from 200 to 230 kg/cm2 and the injection timings were retarded from 22° to 16° BTDC. The results show that increasing injection pressure can improve spray characteristics as indicated by shorter penetration and smaller spray diameter of 30% and 9.8%, respectively and increase in spray spread angle of 21.9%. Then the optimization of engine performances and emissions, obtained at an injection pressure of 230 kg/cm2 and injection timing of 16° BTDC with an increase of power and thermal efficiency of 3.9% and 13.9%, respectively and reduction in smoke emissions of 45.2% at high load.


The purpose of this study is to investigate the effect of fuelinjection pressure onhomogeneous charge formation and performanceand emission characteristics of Homogeneous charge compression ignition engine. The fuel injection pressure isone of the primary parameter for improvingthe homogeneity of the mixture and governing the power output and emission characteristics of HCCI engine. In this investigation, diesel fuelwasinjected at different injection pressuresas 2bar, 3bar, 4bar and 5bar respectively throughbyport fuel injector. The experimental investigationsshow that increasing the fuel injection pressure will promote the fuel to penetrate with air and creates well pre mixedair/fuel charge.The result shows, the specific fuel consumption (SFC) of HCCI engine isslightlyhigherthan the SFC of conventional diesel engine.The HCCI engine with 3bar injection pressure operated engine has lower SFC values compared to other injection pressure operated HCCI engine.The brake thermal efficiency of HCCI engine, operated with 3barinjection pressure has maximum BTE values over the other injection pressure operated engine.From theresult, it is observed that HCCI engine has lower smoke density values compared to conventional diesel engine andfurther reducedby increasing the fuel injection pressure. The 3bar injection pressure operated HCCI engine has emitted lower smoke densitycompared to other injection pressure operated HCCI engine. The 3bar injection pressureoperated HCCIengine hasemittedmaximum oxides of nitrogen (NOx) emissions than the other injection pressure operated HCCI engine. Other exhaust emissions of carbon monoxide (CO) and hydrocarbon (HC)emissions are increased when compared toconvention diesel engine


2020 ◽  
pp. 1-48 ◽  
Author(s):  
Vinod Babu Marri ◽  
K. Madhu Murthy ◽  
G. Amba Prasad Rao

Abstract The typical tradeoff between the two major emissions from compression ignition (CI) engines, smoke and oxides of nitrogen, is the unresolved challenge to the researchers. Techniques like engine downsizing, lowering intake oxygen concentration, multiple injections, use of retarded injection timings and higher injection pressures, etc. are widely employed for the alleviation of these harmful emissions. The influence of variation of fuel injection pressure (FIP), boost pressure, pilot injection timing (PIT), pilot injection quantity (PIQ) and main injection timing (MIT) are experimentally investigated in the present work. Mahindra mHawk four-cylinder diesel engine with provisions of a variable-geometry turbocharger (VGT), exhaust gas recirculation (EGR), and common-rail direct injection (CRDi) is chosen for the experimentation. Test runs are conducted at 1750 rpm and 80.3 N.m (4.6 bar bmep) corresponding to highway drive conditions, using 10 % EGR. Response surface methodology is employed for the design of experiments and to analyze the experimental data. Multi-objective response optimization is carried out to optimize engine-operating parameters that give desired performance and engine-out emissions. Confirmatory tests are conducted at design conditions to validate the results predicted by the model. This study reveals that the optimum performance and emission characteristics could be obtained using 120 kPa boost pressure; 61.1 MPa fuel injection pressure; 11.5 % pilot injection quantity with pilot injection at 332 °CA and main injection at 359 °CA.


Sign in / Sign up

Export Citation Format

Share Document