needle valve
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 19)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 2097 (1) ◽  
pp. 012001
Author(s):  
Ziwei Zhang ◽  
Chunlong Xu

Abstract In order to study the influence of parameters of common rail injector internal components on cycle injection consistency, its simulation model is established by AMESim, and the model is validated by the experimental injection rate data. The effects of solenoid valve spring preload, gag bit lift, fuel discharge hole diameter, fuel inlet hole diameter, needle valve lift, needle valve preload and nozzle diameter on the change of injection quantity under different operating conditions are studied by simulation method, and the impact weight of each parameter on fuel injection consistency is analyzed. The results show that the preload of solenoid valve, fuel discharge hole diameter, oil inlet hole diameter, needle valve lift and nozzle diameter are the main parameters affecting the consistency of cycle injection. The percentages of five parameters influencing on the consistency of cyclic injection are 8.68-16.84%, 11.41-23.68%, 17.2086-37.74%, 12.772-18.34% and 9.69-37.27% respectively.


2021 ◽  
Vol 2097 (1) ◽  
pp. 012014
Author(s):  
Ziwei Zhang

Abstract In order to study the effect of fuel leakage of an ultra-high pressure common rail injector control valve coupling on fuel injection performance, a simulation model was established by AMESim and the accuracy was verified by fuel injection test data. The leakage law of couples with different clearances was analyzed by using numerical simulation method and then the influence of control valve coupling on fuel injection performance was analyzed. The results demonstrate that the increase of the matching clearance of the slide valve coupling makes the start time of needle valve advanced and delay its end time. The injection rate and injection duration increase with the increase of the matching clearance of slide valve coupling. The increase of the matching clearance of the control plunger coupling keeps the start time of the needle valve unchanged at first, and then delay slightly, while the end time remains unchanged at first, and then show the trend of advance. The injection rate and injection duration decrease with the increase of the matching clearance of plunger coupling.


Author(s):  
Zahra Rezvanjoo ◽  
Farhad Raofie

Aims: To propose a modified RESS method of herbal pharmaceutical extracts nanoparticle production. Background: A vast number of methods have been applied to water-insoluble pharmaceuticals to improve their solubility. Nanoparticle production of pharmaceuticals is considered as one of the high-speed ways to improve solubility. Objective: Supercritical CO2 was applied to extract Zingiber officinale Roscoe rhizome pharmaceutical. Then a modified RESS (rapid expansion of supercritical solution) method, called ESS (expansion of supercritical solution), was exerted to obtain NPs (nanoparticles) of the extracted pharmaceuticals. Methods: Initially, applying high pressure in supercritical CO2 contributed to the extract dissolution such that supercritical CO2 was saturated with the sample. Then by decreasing the pressure, an expansion occurred in the saturated medium. This expansion reduced the power of supercritical CO2 solvent and induced the sample nanoparticle nucleation in the needle valve. Conclusion: Unlike rapid expansion of supercritical solution methodology, in this technique, the initial and secondary pressures were permanently above the critical pressure to provide a gentle expansion, which contributes to the production of uniform and small particles. The obtained uniform NPs had a narrow size distribution. Consequently, ESS technique can be considered as an efficient technique for improving the solubility of hydrophobic pharmaceuticals such as [6]-gingerol.


Author(s):  
Enrico Franco ◽  
Tutla Ayatullah ◽  
Arif Sugiharto ◽  
Arnau Garriga-Casanovas ◽  
Vani Virdyawan

AbstractThis paper investigates the model-based nonlinear control of a class of soft continuum pneumatic manipulators that bend due to pressurization of their internal chambers and that operate in the presence of disturbances. A port-Hamiltonian formulation is employed to describe the closed loop system dynamics, which includes the pressure dynamics of the pneumatic actuation, and new nonlinear control laws are constructed with an energy-based approach. In particular, a multi-step design procedure is outlined for soft continuum manipulators operating on a plane and in 3D space. The resulting nonlinear control laws are combined with adaptive observers to compensate the effect of unknown disturbances and model uncertainties. Stability conditions are investigated with a Lyapunov approach, and the effect of the tuning parameters is discussed. For comparison purposes, a different control law constructed with a backstepping procedure is also presented. The effectiveness of the control strategy is demonstrated with simulations and with experiments on a prototype. To this end, a needle valve operated by a servo motor is employed instead of more sophisticated digital pressure regulators. The proposed controllers effectively regulate the tip rotation of the prototype, while preventing vibrations and compensating the effects of disturbances, and demonstrate improved performance compared to the backstepping alternative and to a PID algorithm.


2021 ◽  
Vol 2024 (1) ◽  
pp. 012041
Author(s):  
Ruibin Xie ◽  
Shuzhen Yang ◽  
Chenzhe Sun ◽  
Tao Yu

Author(s):  
Alec Nordlund ◽  
Matt Harrison ◽  
Joshua Gess

Abstract Through the application of cryogenic cooling via liquid nitrogen (LN2), the power consumption of a CPU was substantially reduced. Using a digitally controlled solenoid valve and an additively manufactured cold plate, the manual process of LN2 cooling was automated for precise control of cold plate temperature. The power consumption and frequency relationship of the processor was established across three different thermal solutions to determine the effect of temperature on this relationship. It was found that power consumption of the processor decreased at lower temperatures due to a reduction in current leakage and the core voltage necessary for stable operation. This culminated in a reduction of up to 10.6% in processor power consumption for the automated solution and 20.8% for the manual LN2 solution when compared to the air cooled baseline. Due to the binary nature of the solenoid valve, flow rate was tuned via an in-line needle valve to increase thermal stability. It was found that for lower flow rates, approximately 5.0 g/s, temperatures oscillated within a range of +/- 11.5°C while higher flow rates of 10 to 12 g/s generated amplitudes as small as +/-3.5°C. Additionally, several tests measured the rate of LN2 consumption and found that the automated solution used 230% to 280% more coolant than the manual thermal solution, implying there is room for improvement in the cold plate geometry, LN2 vapor exhaust design, and coolant delivery optimization.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2923
Author(s):  
Konstantinos Kolovos ◽  
Phoevos Koukouvinis ◽  
Robert M. McDavid ◽  
Manolis Gavaises

An investigation of the fuel heating, vapor formation, and cavitation erosion location patterns inside a five-hole common rail diesel fuel injector, occurring during the early opening period of the needle valve (from 2 μm to 80 μm), discharging at pressures of up to 450 MPa, is presented. Numerical simulations were performed using the explicit density-based solver of the compressible Navier–Stokes (NS) and energy conservation equations. The flow solver was combined with tabulated property data for a four-component diesel fuel surrogate, derived from the perturbed chain statistical associating fluid theory (PC-SAFT) equation of state (EoS), which allowed for a significant amount of the fuel’s physical and transport properties to be quantified. The Wall Adapting Local Eddy viscosity (WALE) Large Eddy Simulation (LES) model was used to resolve sub-grid scale turbulence, while a cell-based mesh deformation arbitrary Lagrangian–Eulerian (ALE) formulation was used for modelling the injector’s needle valve movement. Friction-induced heating was found to increase significantly when decreasing the pressure. At the same time, the Joule–Thomson cooling effect was calculated for up to 25 degrees K for the local fuel temperature drop relative to the fuel’s feed temperature. The extreme injection pressures induced fuel jet velocities in the order of 1100 m/s, affecting the formation of coherent vortical flow structures into the nozzle’s sac volume.


2021 ◽  
pp. 146808742098518
Author(s):  
Manolis Gavaises ◽  
Mithun Murali-Girija ◽  
Carlos Rodriguez ◽  
Phoevos Koukouvinis ◽  
Martin Gold ◽  
...  

The present work describes a numerical methodology and its experimental validation of the flow development inside and outside of the orifices during a pilot injection, dwelt time and the subsequent start of injection cycle. The compressible Navier-Stokes equations are numerically solved in a six-hole injector imposing realistic conditions of the needle valve movement and considering in addition a time-dependent eccentric motion. The valve motion is simulated using the immersed boundary method; this allows for simulations to be performed at zero lift during the dwelt time between successive injections, where the needle remains closed. Moreover, the numerical model utilises a fully compressible two-phase (liquid, vapour) two-component (fuel, air) barotropic model. The air’s motion is simulated with an additional transport equation coupled with the VOF interface capturing method able to resolve the near-nozzle atomisation and the resulting impact of the injected liquid on the oleophilic nozzle wall surfaces. The eccentric needle motion is found to be responsible for the formation of strong swirling flows inside the orifices, which not only contributes to the breakup of the injected liquid jet into ligaments but also to their backwards motion towards the external wall surface of the injector. Model predictions suggest that such nozzle wall wetting phenomena are more pronounced during the closing period of the valve and the re-opening of the nozzle, due to the residual gases trapped inside the nozzle, and which contribute to the poor atomisation of the injected fluid upon re-opening of the needle valve in subsequent injection events.


2021 ◽  
pp. 146808742098736
Author(s):  
Chuqiao Wang ◽  
Moro Adams ◽  
Tianyu Jin ◽  
Yu sun ◽  
Andreas Röll ◽  
...  

Past experimental studies have shown that the needle valve of high-pressure diesel injectors undergoes lateral movement and deformation, while the continuous increase in injection pressure enlarges the gap of the needle valve assembly. Two different analytical models, considering or omitting this change are presented here, linking the geometries of the needle valve assembly with the magnitude of needle valve tip lateral movement. It is found that the physical dimensions of the needle valve assembly and the injection pressure have a significant impact on the radial displacement of the needle. For example, for nominal clearances between the needle guidance and the needle valve of about 1–3 μm, the magnitude of the radial movement of the needle tip could reach tens of microns. The model that takes into account the variation of the gap between the needle guide and needle valve is found to give predictions closer to the experimental results.


Sign in / Sign up

Export Citation Format

Share Document