Complexity of κ-ultrafilters and inner models with measurable cardinals

1984 ◽  
Vol 49 (3) ◽  
pp. 833-841 ◽  
Author(s):  
Claude Sureson

The purpose of this paper is to establish a connection between the complexity of κ-ultrafilters over a measurable cardinal κ, and the existence of ascending Rudin-Keisler chains of κ-ultrafilters and of inner models with several measurable cardinals.If V is a model of ZFC + “There exists a measurable cardinal κ”, then V satisfies “There exists a normal κ-ultrafilter”, that is to say a “simple” κ-ultrafilter. The only known examples of “complex” κ-ultrafilters have been constructed by Kanamori [2], Ketonen [4] and Kunen (cf. [2]) with stronger hypotheses than measurability: compactness or supercompactness. Using the notions of skies and constellations defined by Kanamori [2] for the measurable case, and which witness the complexity of a κ-ultrafilter, we shall show the necessity of such assumptions, namely:Theorem 1. If λ < κ is a strongly inaccessible cardinal, the existence of a κ-ultrafilter with more than λ constellations implies that there is an inner model with two measurable cardinals if λ = ω and λ + 1 measurable cardinals otherwise.Theorem 2. Let θ < κ be an arbitrary ordinal. If there is a κ-ultrafilter such that the order-type of its skies is greater than ωθ, then there exists an inner model with θ + 1 measurable cardinals.And as a corollary, we obtain:Theorem 3. Let μ < κ be a regular cardinal. If there exists a κ-ultrafilter containing the closed-unbounded subsets of κ and {α < κ: cf(α) = μ}, then there is an inner model with two measurable cardinals if μ = ω, and μ + 1 measurable cardinals otherwise.

1984 ◽  
Vol 49 (4) ◽  
pp. 1185-1189 ◽  
Author(s):  
Saharon Shelah ◽  
Hugh Woodin

We prove several independence results relevant to an old question in the folklore of set theory. These results complement those in [Sh, Chapter XIII, §4]. The question is the following. Suppose V ⊨ “ZFC + CH” and r is a real not in V. Must V[r] ⊨ CH? To avoid trivialities assume = .We answer this question negatively. Specifically we find pairs of models (W, V) such that W ⊨ ZFC + CH, V = W[r], r a real, = and V ⊨ ¬CH. Actually we find a spectrum of such pairs using ZFC up to “ZFC + there exist measurable cardinals”. Basically the nicer the pair is as a solution, the more we need to assume in order to construct it.The relevant results in [Sh, Chapter XIII] state that if a pair (of inner models) (W, V) satisfies (1) and (2) then there is an inaccessible cardinal in L; if in addition V ⊨ 2ℵ0 > ℵ2 then 0# exists; and finally if (W, V) satisfies (1), (2) and (3) with V ⊨ 2ℵ0 > ℵω, then there is an inner model with a measurable cardinal.Definition 1. For a pair (W, V) we shall consider the following conditions:(1) V = W[r], r a real, = , W ⊨ ZFC + CH but CH fails in V.(2) W ⊨ GCH.(3) W and V have the same cardinals.


1981 ◽  
Vol 46 (1) ◽  
pp. 59-66
Author(s):  
A. Kanamori

This paper continues the study of κ-ultrafilters over a measurable cardinal κ, following the sequence of papers Ketonen [2], Kanamori [1] and Menas [4]. Much of the concern will be with p-point κ-ultrafilters, which have become a focus of attention because they epitomize situations of further complexity beyond the better understood cases, normal and product κ-ultrafilters.For any κ-ultrafilter D, let iD: V → MD ≃ Vκ/D be the elementary embedding of the universe into the transitization of the ultrapower by D. Situations of U < RKD will be exhibited when iU(κ) < iD(κ), and when iU(κ) = iD(κ). The main result will then be that if the latter case obtains, then there is an inner model with two measurable cardinals. (As will be pointed out, this formulation is due to Kunen, and improves on an earlier version of the author.) Incidentally, a similar conclusion will also follow from the assertion that there is an ascending Rudin-Keisler chain of κ-ultrafilters of length ω + 1. The interest in these results lies in the derivability of a substantial large cardinal assertion from plausible hypotheses on κ-ultrafilters.


1986 ◽  
Vol 51 (1) ◽  
pp. 33-38
Author(s):  
Mitchell Spector

The concept of "partition relation" has proven to be extremely important in the development of the theory of large cardinals. This is due in good part to the fact that the ordinal numbers which appear as parameters in partition relations provide a natural way to define a detailed hierarchy of the corresponding large cardinal axioms. In particular, the study of cardinals satisfying Ramsey-Erdös-style partition relations has yielded a great number of very interesting large cardinal axioms which lie in strength strictly between inaccessibility and measurability. It is the purpose of this paper to show that this phenomenon does not occur if we use infinite exponent partition relations; no such partition relation has consistency strength strictly between inaccessibility and measurability. We also give a complete determination of which infinite exponent partition relations hold, assuming that there is no inner model of set theory with a measurable cardinal.Our notation is standard. If F is a function and x is a set, then F″x denotes the range of F on x. If X is a set of ordinals and α is an ordinal, then [X]α is the collection of all subsets of X of order type α. We identify a member of [X]α with a strictly increasing function from α to X. If p ∈ [X]α and q ∈ [α]β, then the composition of p with q, which we denote pq, is a member of [X]β.


1984 ◽  
Vol 49 (4) ◽  
pp. 1198-1204 ◽  
Author(s):  
Peter Koepke

A subset X of a structure S is called free in S if ∀x ∈ Xx ∉ S[X − {x}]; here, S[Y] is the substructure of S generated from Y by the functions of S. For κ, λ, μ cardinals, let Frμ(κ, λ) be the assertion:for every structure S with κ ⊂ S which has at most μ functions and relations there is a subset X ⊂ κ free in S of cardinality ≥ λ.We show that Frω(ωω, ω), the free-subset property for ωω, is equiconsistent with the existence of a measurable cardinal (2.2,4.4). This answers a question of Devlin [De].In the first section of this paper we prove some combinatorial facts about Frμ(κ, λ); in particular the first cardinal κ such that Frω(κ, ω) is weakly inaccessible or of cofinality ω (1.2). The second section shows that, under Frω(ωω, ω), ωω is measurable in an inner model. For the convenience of readers not acquainted with the core model κ, we first deduce the existence of 0# (2.1) using the inner model L. Then we adapt the proof to the core model and obtain that ωω is measurable in an inner model. For the reverse direction, we essentially apply a construction of Shelah [Sh] who forced Frω(ωω, ω) over a ground model which contains an ω-sequence of measurable cardinals. We show in §4 that indeed a coherent sequence of Ramsey cardinals suffices. In §3 we obtain such a sequence as an endsegment of a Prikry sequence.


2006 ◽  
Vol 12 (4) ◽  
pp. 591-600 ◽  
Author(s):  
Sy-David Friedman

There are two standard ways to establish consistency in set theory. One is to prove consistency using inner models, in the way that Gödel proved the consistency of GCH using the inner model L. The other is to prove consistency using outer models, in the way that Cohen proved the consistency of the negation of CH by enlarging L to a forcing extension L[G].But we can demand more from the outer model method, and we illustrate this by examining Easton's strengthening of Cohen's result:Theorem 1 (Easton's Theorem). There is a forcing extensionL[G] of L in which GCH fails at every regular cardinal.Assume that the universe V of all sets is rich in the sense that it contains inner models with large cardinals. Then what is the relationship between Easton's model L[G] and V? In particular, are these models compatible, in the sense that they are inner models of a common third model? If not, then the failure of GCH at every regular cardinal is consistent only in a weak sense, as it can only hold in universes which are incompatible with the universe of all sets. Ideally, we would like L[G] to not only be compatible with V, but to be an inner model of V.We say that a statement is internally consistent iff it holds in some inner model, under the assumption that there are innermodels with large cardinals.


1985 ◽  
Vol 50 (1) ◽  
pp. 220-226
Author(s):  
Michael Sheard

Probably the two most famous examples of elementary embeddings between inner models of set theory are the embeddings of the universe into an inner model given by a measurable cardinal and the embeddings of the constructible universeLinto itself given by 0#. In both of these examples, the “target model” is a subclass of the “ground model” (and in the latter case they are equal). It is not hard to find examples of embeddings in which the target model is not a subclass of the ground model: ifis a generic ultrafilter arising from forcing with a precipitous ideal on a successor cardinalκ, then the ultraproduct of the ground model viacollapsesκ. Such considerations suggest a classification of how close the target model comes to “fitting inside” the ground model.Definition 1.1. LetMandNbe inner models (transitive, proper class models) of ZFC, and letj:M→Nbe an elementary embedding. Theco-critical pointofjis the least ordinalλ, if any exist, such that there isX⊆λ, X∈NbutX∉M. Such anXis called anew subsetofλ.It is easy to see that the co-critical point ofj:M→Nis a cardinal inN.


1979 ◽  
Vol 44 (4) ◽  
pp. 503-506
Author(s):  
D. A. Martin ◽  
W. Mitchell

Solovay proved in 1967 that the axiom of determinateness implies that the filter C generated by closed and unbounded subsets of ω1 is an ultrafilter. It has long been conjectured that a significant part of the theory of the axiom of determinateness should be provable from the hypothesis that C is an ultrafilter, but even the first step of finding inner models with several measurable cardinals has proved elusive. In this paper we show that such models exist. Much of our proof is a modification of Kunen's proof in [3] of the same conclusion from the existence of a measurable cardinal κ such that 2κ > κ+.Since no proof of Solovay's result seems to have been published, we insert a proof here. We want to show that for any set x ⊂ ω1 there is a closed, unbounded set either contained in or disjoint from x. By the lemma of [4] there is a Turing degree d such that either ω1e Є x for all degrees e ≥T d or ω1e ∉ x for all degrees e ≥T d. By a theorem of Sacks [1], [5] every d-admissible is ω1e for some e ≥T d, so it is enough to show that there is a closed, unbounded set of d-admissibles. Let a ⊂ ω have degree d; then is such a set.


1991 ◽  
Vol 56 (1) ◽  
pp. 103-107
Author(s):  
Maxim R. Burke

AbstractWe investigate the cofinality of the partial order κ of functions from a regular cardinal κ into the ideal of Lebesgue measure zero subsets of R. We show that when add () = κ and the covering lemma holds with respect to an inner model of GCH, then cf (κ) = max{cf(κκ), cf([cf()]κ)}. We also give an example to show that the covering assumption cannot be removed.


1985 ◽  
Vol 50 (2) ◽  
pp. 531-543 ◽  
Author(s):  
Arthur W. Apter

A very fruitful line of research in recent years has been the application of techniques in large cardinals and forcing to the production of models in which certain consequences of the axiom of determinateness (AD) are true or in which certain “AD-like” consequences are true. Numerous results have been published on this subject, among them the papers of Bull and Kleinberg [4], Bull [3], Woodin [15], Mitchell [11], and [1], [2].Another such model will be constructed in this paper. Specifically, the following theorem is proven.Theorem 1. Con(ZFC + There are cardinals κ < δ < λ so that κ is a supercompact limit of supercompact cardinals, λ is a measurable cardinal, and δ is λ supercompact) ⇒ Con(ZF + ℵ1 and ℵ2 are Ramsey cardinals + The ℵn for 3 ≤ n ≤ ω are singular cardinals of cofinality ω each of which carries a Rowbottom filter + ℵω + 1 is a Ramsey cardinal + ℵω + 2 is a measurable cardinal).It is well known that under AD + DC, ℵ2 and ℵ2 are measurable cardinals, the ℵn for 3 ≤ n < ω are singular Jonsson cardinals of cofinality ℵ2, ℵω is a Rowbottom cardinal, and ℵω + 1 and ℵω + 2 are measurable cardinals.The proof of the above theorem will use the existence of normal ultrafilters which satisfy a certain property (*) (to be defined later) and an automorphism argument which draws upon the techniques developed in [9], [2], and [4] but which shows in addition that certain supercompact Prikry partial orderings are in a strong sense “homogeneous”. Before beginning the proof of the theorem, however, we briefly mention some preliminaries.


2016 ◽  
Vol 81 (3) ◽  
pp. 972-996 ◽  
Author(s):  
GUNTER FUCHS ◽  
RALF SCHINDLER

AbstractOne of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection of all grounds of V, that is, of all inner models M of V such that V is a set-forcing extension of M. The main theme of the present paper is to identify situations in which the mantle turns out to be a fine structural extender model. The first main result is that this is the case when the universe is constructible from a set and there is an inner model with a Woodin cardinal. The second situation like that arises if L[E] is an extender model that is iterable in V but not internally iterable, as guided by P-constructions, L[E] has no strong cardinal, and the extender sequence E is ordinal definable in L[E] and its forcing extensions by collapsing a cutpoint to ω (in an appropriate sense). The third main result concerns the Solid Core of a model of set theory. This is the union of all sets that are constructible from a set of ordinals that cannot be added by set-forcing to an inner model. The main result here is that if there is an inner model with a Woodin cardinal, then the solid core is a fine-structural extender model.


Sign in / Sign up

Export Citation Format

Share Document