scholarly journals Internal Consistency and the Inner Model Hypothesis

2006 ◽  
Vol 12 (4) ◽  
pp. 591-600 ◽  
Author(s):  
Sy-David Friedman

There are two standard ways to establish consistency in set theory. One is to prove consistency using inner models, in the way that Gödel proved the consistency of GCH using the inner model L. The other is to prove consistency using outer models, in the way that Cohen proved the consistency of the negation of CH by enlarging L to a forcing extension L[G].But we can demand more from the outer model method, and we illustrate this by examining Easton's strengthening of Cohen's result:Theorem 1 (Easton's Theorem). There is a forcing extensionL[G] of L in which GCH fails at every regular cardinal.Assume that the universe V of all sets is rich in the sense that it contains inner models with large cardinals. Then what is the relationship between Easton's model L[G] and V? In particular, are these models compatible, in the sense that they are inner models of a common third model? If not, then the failure of GCH at every regular cardinal is consistent only in a weak sense, as it can only hold in universes which are incompatible with the universe of all sets. Ideally, we would like L[G] to not only be compatible with V, but to be an inner model of V.We say that a statement is internally consistent iff it holds in some inner model, under the assumption that there are innermodels with large cardinals.

2016 ◽  
Vol 81 (3) ◽  
pp. 972-996 ◽  
Author(s):  
GUNTER FUCHS ◽  
RALF SCHINDLER

AbstractOne of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection of all grounds of V, that is, of all inner models M of V such that V is a set-forcing extension of M. The main theme of the present paper is to identify situations in which the mantle turns out to be a fine structural extender model. The first main result is that this is the case when the universe is constructible from a set and there is an inner model with a Woodin cardinal. The second situation like that arises if L[E] is an extender model that is iterable in V but not internally iterable, as guided by P-constructions, L[E] has no strong cardinal, and the extender sequence E is ordinal definable in L[E] and its forcing extensions by collapsing a cutpoint to ω (in an appropriate sense). The third main result concerns the Solid Core of a model of set theory. This is the union of all sets that are constructible from a set of ordinals that cannot be added by set-forcing to an inner model. The main result here is that if there is an inner model with a Woodin cardinal, then the solid core is a fine-structural extender model.


2008 ◽  
Vol 73 (2) ◽  
pp. 391-400 ◽  
Author(s):  
Sy-David Friedman ◽  
Philip Welch ◽  
W. Hugh Woodin

The Inner Model Hypothesis (IMH) and the Strong Inner Model Hypothesis (SIMH) were introduced in [4]. In this article we establish some upper and lower bounds for their consistency strength.We repeat the statement of the IMH, as presented in [4]. A sentence in the language of set theory is internally consistent iff it holds in some (not necessarily proper) inner model. The meaning of internal consistency depends on what inner models exist: If we enlarge the universe, it is possible that more statements become internally consistent. The Inner Model Hypothesis asserts that the universe has been maximised with respect to internal consistency:The Inner Model Hypothesis (IMH): If a statement φ without parameters holds in an inner model of some outer model of V (i.e., in some model compatible with V), then it already holds in some inner model of V.Equivalently: If φ is internally consistent in some outer model of V then it is already internally consistent in V. This is formalised as follows. Regard V as a countable model of Gödel-Bernays class theory, endowed with countably many sets and classes. Suppose that V* is another such model, with the same ordinals as V. Then V* is an outer model of V (V is an inner model of V*) iff the sets of V* include the sets of V and the classes of V* include the classes of V. V* is compatible with V iff V and V* have a common outer model.


1996 ◽  
Vol 2 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Greg Hjorth

§0. Preface. There has been an expectation that the endgame of the more tenacious problems raised by the Los Angeles ‘cabal’ school of descriptive set theory in the 1970's should ultimately be played out with the use of inner model theory. Questions phrased in the language of descriptive set theory, where both the conclusions and the assumptions are couched in terms that only mention simply definable sets of reals, and which have proved resistant to purely descriptive set theoretic arguments, may at last find their solution through the connection between determinacy and large cardinals.Perhaps the most striking example was given by [24], where the core model theory was used to analyze the structure of HOD and then show that all regular cardinals below ΘL(ℝ) are measurable. John Steel's analysis also settled a number of structural questions regarding HODL(ℝ), such as GCH.Another illustration is provided by [21]. There an application of large cardinals and inner model theory is used to generalize the Harrington-Martin theorem that determinacy implies )determinacy.However, it is harder to find examples of theorems regarding the structure of the projective sets whose only known proof from determinacy assumptions uses the link between determinacy and large cardinals. We may equivalently ask whether there are second order statements of number theory that cannot be proved under PD–the axiom of projective determinacy–without appealing to the large cardinal consequences of the PD, such as the existence of certain kinds of inner models that contain given types of large cardinals.


2014 ◽  
Vol 79 (4) ◽  
pp. 1247-1285 ◽  
Author(s):  
SEAN COX ◽  
MARTIN ZEMAN

AbstractIt is well known that saturation of ideals is closely related to the “antichain-catching” phenomenon from Foreman–Magidor–Shelah [10]. We consider several antichain-catching properties that are weaker than saturation, and prove:(1)If${\cal I}$is a normal ideal on$\omega _2 $which satisfiesstationary antichain catching, then there is an inner model with a Woodin cardinal;(2)For any$n \in \omega $, it is consistent relative to large cardinals that there is a normal ideal${\cal I}$on$\omega _n $which satisfiesprojective antichain catching, yet${\cal I}$is not saturated (or even strong). This provides a negative answer to Open Question number 13 from Foreman’s chapter in the Handbook of Set Theory ([7]).


1994 ◽  
Vol 59 (2) ◽  
pp. 461-472
Author(s):  
Garvin Melles

Mathematicians have one over on the physicists in that they already have a unified theory of mathematics, namely, set theory. Unfortunately, the plethora of independence results since the invention of forcing has taken away some of the luster of set theory in the eyes of many mathematicians. Will man's knowledge of mathematical truth be forever limited to those theorems derivable from the standard axioms of set theory, ZFC? This author does not think so, he feels that set theorists' intuition about the universe of sets is stronger than ZFC. Here in this paper, using part of this intuition, we introduce some axiom schemata which we feel are very natural candidates for being considered as part of the axioms of set theory. These schemata assert the existence of many generics over simple inner models. The main purpose of this article is to present arguments for why the assertion of the existence of such generics belongs to the axioms of set theory.Our central guiding principle in justifying the axioms is what Maddy called the rule of thumb maximize in her survey article on the axioms of set theory, [8] and [9]. More specifically, our intuition conforms with that expressed by Mathias in his article What is Maclane Missing? challenging Mac Lane's view of set theory.


1953 ◽  
Vol 18 (2) ◽  
pp. 145-167 ◽  
Author(s):  
J. C. Shepherdson

In this third and last paper on inner models we consider some of the inherent limitations of the method of using inner models of the type defined in 1.2 for the proof of consistency results for the particular system of set theory under consideration. Roughly speaking this limitation may be described by saying that practically no further consistency results can be obtained by the construction of models satisfying the conditions of theorem 1.5, i.e., conditions 1.31, 1.32, 1.33, 1.51, viz.:This applies in particular to the ‘complete models’ defined in 1.4. Before going on to a precise statement of these limitations we shall consider now the theorem on which they depend. This is concerned with a particular type of complete model examples of which we call “proper complete models”; they are those complete models which are essentially interior to the universe, those whose classes are sets of the universe constituting a class thereof, i.e., those for which the following proposition is true:The main theorem of this paper is that the statement that there are no models of this kind can be expressed formally in the same way as the axioms A, B, C and furthermore it can be proved that if the axiom system A, B, C is consistent then so is the system consisting of axioms A, B, C, plus this new hypothesis that there exist no proper complete models. When combined with the axiom ‘V = L’ introduced by Gödel in (1) this new hypothesis yields a system in which any normal complete model which exists has for its universal class V, the universal class of the original system.


2020 ◽  
Vol 30 (1) ◽  
pp. 447-457
Author(s):  
Michael Rathjen

Abstract While power Kripke–Platek set theory, ${\textbf{KP}}({\mathcal{P}})$, shares many properties with ordinary Kripke–Platek set theory, ${\textbf{KP}}$, in several ways it behaves quite differently from ${\textbf{KP}}$. This is perhaps most strikingly demonstrated by a result, due to Mathias, to the effect that adding the axiom of constructibility to ${\textbf{KP}}({\mathcal{P}})$ gives rise to a much stronger theory, whereas in the case of ${\textbf{KP}}$, the constructible hierarchy provides an inner model, so that ${\textbf{KP}}$ and ${\textbf{KP}}+V=L$ have the same strength. This paper will be concerned with the relationship between ${\textbf{KP}}({\mathcal{P}})$ and ${\textbf{KP}}({\mathcal{P}})$ plus the axiom of choice or even the global axiom of choice, $\textbf{AC}_{\tiny {global}}$. Since $L$ is the standard vehicle to furnish a model in which this axiom holds, the usual argument for demonstrating that the addition of ${\textbf{AC}}$ or $\textbf{AC}_{\tiny {global}}$ to ${\textbf{KP}}({\mathcal{P}})$ does not increase proof-theoretic strength does not apply in any obvious way. Among other tools, the paper uses techniques from ordinal analysis to show that ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ has the same strength as ${\textbf{KP}}({\mathcal{P}})$, thereby answering a question of Mathias. Moreover, it is shown that ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ is conservative over ${\textbf{KP}}({\mathcal{P}})$ for $\varPi ^1_4$ statements of analysis. The method of ordinal analysis for theories with power set was developed in an earlier paper. The technique allows one to compute witnessing information from infinitary proofs, providing bounds for the transfinite iterations of the power set operation that are provable in a theory. As the theory ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ provides a very useful tool for defining models and realizability models of other theories that are hard to construct without access to a uniform selection mechanism, it is desirable to determine its exact proof-theoretic strength. This knowledge can for instance be used to determine the strength of Feferman’s operational set theory with power set operation as well as constructive Zermelo–Fraenkel set theory with the axiom of choice.


1995 ◽  
Vol 1 (1) ◽  
pp. 75-84 ◽  
Author(s):  
John R. Steel

In this paper we shall answer some questions in the set theory of L(ℝ), the universe of all sets constructible from the reals. In order to do so, we shall assume ADL(ℝ), the hypothesis that all 2-person games of perfect information on ω whose payoff set is in L(ℝ) are determined. This is by now standard practice. ZFC itself decides few questions in the set theory of L(ℝ), and for reasons we cannot discuss here, ZFC + ADL(ℝ) yields the most interesting “completion” of the ZFC-theory of L(ℝ).ADL(ℝ) implies that L(ℝ) satisfies “every wellordered set of reals is countable”, so that the axiom of choice fails in L(ℝ). Nevertheless, there is a natural inner model of L(ℝ), namely HODL(ℝ), which satisfies ZFC. (HOD is the class of all hereditarily ordinal definable sets, that is, the class of all sets x such that every member of the transitive closure of x is definable over the universe from ordinal parameters (i.e., “OD”). The superscript “L(ℝ)” indicates, here and below, that the notion in question is to be interpreted in L(R).) HODL(ℝ) is reasonably close to the full L(ℝ), in ways we shall make precise in § 1. The most important of the questions we shall answer concern HODL(ℝ): what is its first order theory, and in particular, does it satisfy GCH?These questions first drew attention in the 70's and early 80's. (See [4, p. 223]; also [12, p. 573] for variants involving finer notions of definability.)


1984 ◽  
Vol 49 (3) ◽  
pp. 833-841 ◽  
Author(s):  
Claude Sureson

The purpose of this paper is to establish a connection between the complexity of κ-ultrafilters over a measurable cardinal κ, and the existence of ascending Rudin-Keisler chains of κ-ultrafilters and of inner models with several measurable cardinals.If V is a model of ZFC + “There exists a measurable cardinal κ”, then V satisfies “There exists a normal κ-ultrafilter”, that is to say a “simple” κ-ultrafilter. The only known examples of “complex” κ-ultrafilters have been constructed by Kanamori [2], Ketonen [4] and Kunen (cf. [2]) with stronger hypotheses than measurability: compactness or supercompactness. Using the notions of skies and constellations defined by Kanamori [2] for the measurable case, and which witness the complexity of a κ-ultrafilter, we shall show the necessity of such assumptions, namely:Theorem 1. If λ < κ is a strongly inaccessible cardinal, the existence of a κ-ultrafilter with more than λ constellations implies that there is an inner model with two measurable cardinals if λ = ω and λ + 1 measurable cardinals otherwise.Theorem 2. Let θ < κ be an arbitrary ordinal. If there is a κ-ultrafilter such that the order-type of its skies is greater than ωθ, then there exists an inner model with θ + 1 measurable cardinals.And as a corollary, we obtain:Theorem 3. Let μ < κ be a regular cardinal. If there exists a κ-ultrafilter containing the closed-unbounded subsets of κ and {α < κ: cf(α) = μ}, then there is an inner model with two measurable cardinals if μ = ω, and μ + 1 measurable cardinals otherwise.


1990 ◽  
Vol 55 (3) ◽  
pp. 938-947
Author(s):  
J. M. Henle

One of the simplest and yet most fruitful ideas in forcing was the notion of Karel Prikry in which he used a measure on a cardinal κ to change the cofinality of κ to ω without collapsing it. The idea has found connections to almost every branch of modern set theory, from large cardinals to small, from combinatorics to models, from Choice to Determinacy, and from consistency to inconsistency. The long list of generalizers and modifiers includes Apter, Gitik, Henle, Spector, Shelah, Mathias, Magidor, Radin, Blass and Kimchi.This paper is about generalizing Prikry forcing and partition properties to “simple spaces”. The concept of a simple space is itself the generalization of those combinatorial objects upon which the notions of “measurable”, “compact”, “supercompact”, “huge”, etc. are based. Simple spaces were introduced in [ADHZ1] and [ADHZ2] together with a broader generalization, “filter spaces”. The definition provided here is a small simplification of earlier versions. The author is indebted to Mitchell Spector, whose careful reading turned up numerous errors, some subtle, some flagrant.In this first section, we review simple spaces briefly, including a short introduction to the space Qκλ. In §2, we describe our generalizations of partition property and Prikry forcing, and discuss the relationship between them. In §3, we find a partition property for the huge space [λ]κ, but show that Prikry forcing here is impossible. We find partition properties for Qκλ and show that Prikry forcing can be done here.


Sign in / Sign up

Export Citation Format

Share Document