The elementary theory of free pseudo p-adically closed fields of finite corank

1991 ◽  
Vol 56 (2) ◽  
pp. 484-496 ◽  
Author(s):  
Ido Efrat

Let be p-adic closures of a countable Hilbertian field K. The main result of [EJ] asserts that the field has the following properties for almost all σ1,…,σe + m ϵ G(K) (in the sense of the unique Haar measure on G(K)e+m):(a) Kσ is pseudo p-adically closed (abbreviation: PpC), i.e., each nonempty absolutely irreducible variety defined over Kσ has a Kσ-rational point, provided that it has a simple rational point in each p-adic closure of Kσ.(b) G(Kσ) ≅ De,m, where De,m is the free profinite product of e copies Γ1,…, Γe of G(ℚp) and a free profinite group of rank m.(c) Kσ has exactly e nonequivalent p-adic valuation rings. They are the restrictions Oσ1,…, Oσe of the unique p-adic valuation rings on , respectively.In this paper we show that this result is in a certain sense the best possible. More precisely, we first show that the class of fields which satisfy (a)–(c) above is elementary in the appropriate language e(K), which is the ordinary first-order language of rings augmented by constant symbols for the elements of K and by e new unary relation symbols (interpreted as e p-adic valuation rings).

1986 ◽  
Vol 51 (4) ◽  
pp. 981-991 ◽  
Author(s):  
Şerban A. Basarab

In his famous paper [1] on the elementary theory of finite fields Ax considered fields K with the property that every absolutely irreducible variety defined over K has K-rational points. These fields have been called pseudo algebraically closed (pac) and also regularly closed, and extensively studied by Jarden, Éršov, Fried, Wheeler and others, culminating with the basic works [8] and [11].The above algebraic-geometric definition of pac fields can be put into the following equivalent model-theoretic version: K is existentially complete (ec) relative to the first order language of fields into each regular field extension of K. It has been this characterization of pac fields which the author extended in [2] to ordered fields. An ordered field (K, <) is called in [2] pseudo real closed (prc) if (K, <) is ec in every ordered field extension (L, <) with L regular over K. The concept of pre ordered field has also been introduced by McKenna in his thesis [15] by analogy with the original algebraic-geometric definition of pac fields.Given a positive integer e, a system K = (K; P1, …, Pe), where K is a field and P1, …, Pe are orders of K (identified with the corresponding positive cones), is called an e-fold ordered field (e-field). In his thesis [9] van den Dries developed a model theory for e-fields. The main result proved in [9, Chapter II] states that the theory e-OF of e-fields is model con. panionable, and the models of the model companion e-OF are explicitly described.


1985 ◽  
Vol 50 (2) ◽  
pp. 468-475 ◽  
Author(s):  
Lou van den Dries ◽  
Rick L. Smith

A field K is regularly closed if every absolutely irreducible affine variety defined over K has K-rational points. This notion was first isolated by Ax [A] in his work on the elementary theory of finite fields. Later Jarden [J2] and Jarden and Kiehne [JK] extended this in different directions. One of the primary results in this area is that the elementary properties of a regularly closed field K with a free Galois group (on either finitely or countably many generators) are determined by the set of integer polynomials in one indeterminate with a zero in K. The method of proof employed in [J1], [J2] and [JK] is unusual for algebra since it is a measure-theoretic argument. In this brief summary we have not made any attempt at completeness. We refer the reader to the recent paper of Cherlin, van den Dries, and Macintyre [CDM] and to the forthcoming book by Fried and Jarden [FJ] for a more thorough discussion of the latest results. We would like to thank Moshe Jarden, Angus Macintyre, and Zoe Chatzidakis for their comments on an earlier version of this paper.A countable field K is ω-free if the absolute Galois group , where is the algebraic closure of K and is the free profinite group on ℵ0 generators.


1982 ◽  
Vol 47 (3) ◽  
pp. 669-679 ◽  
Author(s):  
Walter Baur

Let ℒ be the first order language of field theory with an additional one place predicate symbol. In [B2] it was shown that the elementary theory T of the class of all pairs of real closed fields, i.e., ℒ-structures ‹K, L›, K a real closed field, L a real closed subfield of K, is undecidable.The aim of this paper is to show that the elementary theory Ts of a nontrivial subclass of containing many naturally occurring pairs of real closed fields is decidable (Theorem 3, §5). This result was announced in [B2]. An explicit axiom system for Ts will be given later. At this point let us just mention that any model of Ts, is elementarily equivalent to a pair of power series fields ‹R0((TA)), R1((TB))› where R0 is the field of real numbers, R1 = R0 or the field of real algebraic numbers, and B ⊆ A are ordered divisible abelian groups. Conversely, all these pairs of power series fields are models of Ts.Theorem 3 together with the undecidability result in [B2] answers some of the questions asked in Macintyre [M]. The proof of Theorem 3 uses the model theoretic techniques for valued fields introduced by Ax and Kochen [A-K] and Ershov [E] (see also [C-K]). The two main ingredients are(i) the completeness of the elementary theory of real closed fields with a distinguished dense proper real closed subfield (due to Robinson [R]),(ii) the decidability of the elementary theory of pairs of ordered divisible abelian groups (proved in §§1-4).I would like to thank Angus Macintyre for fruitful discussions concerning the subject. The valuation theoretic method of classifying theories of pairs of real closed fields is taken from [M].


1983 ◽  
Vol 48 (4) ◽  
pp. 1125-1129
Author(s):  
Moshe Jarden ◽  
William H. Wheeler

This paper's goal is to determine which complete theories of perfect, e-free Ax fields are model-complete. A field K is e-free for a positive integer e if the Galois group g(KS∣K), where Ks is the separable closure of K, is an e-free, profinite group. A perfect field K is pseudo-algebraically closed if each nonvoid, absolutely irreducible variety defined over K has a K-rational point. A perfect, pseudo-algebraically closed field is called an Ax field. The main theorem isA complete theory of e-free Ax fields is model-complete if and only if its field of absolute numbers is e-free.The sufficiency of the latter condition is an easy consequence of a result of Moshe Jarden and Ursel Kiehne [10] and has been noted independently by A. Macintyre and K. McKenna and undoubtedly by others as well. Consequently the necessity of the latter condition is the interesting part of this paper.James Ax [3] initiated the investigation of 1-free Ax fields. He proved that these fields, which he called pseudo-finite fields, are precisely the infinite models of the theory of finite fields. He [3] also presented examples of perfect, 1-free fields which are not pseudo-algebraically closed and an example of a 1-free Ax field whose complete theory is not model-complete. Moshe Jarden [5] showed that the first examples are isolated cases in that almost all, perfect, 1-free, algebraic extensions of a denumerable, Hilbertian field are pseudo-algebraically closed. The results in this paper show that the second example is also an isolated case in that almost all complete theories of 1-free Ax fields are model-complete.


1986 ◽  
Vol 51 (1) ◽  
pp. 63-74 ◽  
Author(s):  
David Marker

Let L be a first order language containing a binary relation symbol <.Definition. Suppose ℳ is an L-structure and < is a total ordering of the domain of ℳ. ℳ is ordered minimal (-minimal) if and only if any parametrically definable X ⊆ ℳ can be represented as a finite union of points and intervals with endpoints in ℳ.In any ordered structure every finite union of points and intervals is definable. Thus the -minimal structures are the ones with no unnecessary definable sets. If T is a complete L-theory we say that T is strongly (-minimal if and only if every model of T is -minimal.The theory of real closed fields is the canonical example of a strongly -minimal theory. Strongly -minimal theories were introduced (in a less general guise which we discuss in §6) by van den Dries in [1]. Extending van den Dries' work, Pillay and Steinhorn (see [3], [4] and [2]) developed an extensive structure theory for definable sets in strongly -minimal theories, generalizing the results for real closed fields. They also established several striking analogies between strongly -minimal theories and ω-stable theories (most notably the existence and uniqueness of prime models). In this paper we will examine the construction of models of strongly -minimal theories emphasizing the problems involved in realizing and omitting types. Among other things we will prove that the Hanf number for omitting types for a strongly -minimal theory T is at most (2∣T∣)+, and characterize the strongly -minimal theories with models order isomorphic to (R, <).


1996 ◽  
Vol 61 (4) ◽  
pp. 1121-1152 ◽  
Author(s):  
Françoise Delon ◽  
Rafel Farré

AbstractWe study the model theory of fields k carrying a henselian valuation with real closed residue field. We give a criteria for elementary equivalence and elementary inclusion of such fields involving the value group of a not necessarily definable valuation. This allows us to translate theories of such fields to theories of ordered abelian groups, and we study the properties of this translation. We also characterize the first-order definable convex subgroups of a given ordered abelian group and prove that the definable real valuation rings of k are in correspondence with the definable convex subgroups of the value group of a certain real valuation of k.


2019 ◽  
Vol 56 (2) ◽  
pp. 260-266
Author(s):  
Mohamed E. Charkani ◽  
Abdulaziz Deajim

Abstract Let R be a discrete valuation ring, its nonzero prime ideal, P ∈R[X] a monic irreducible polynomial, and K the quotient field of R. We give in this paper a lower bound for the -adic valuation of the index of P over R in terms of the degrees of the monic irreducible factors of the reduction of P modulo . By localization, the same result holds true over Dedekind rings. As an important immediate application, when the lower bound is greater than zero, we conclude that no root of P generates a power basis for the integral closure of R in the field extension of K defined by P.


2017 ◽  
Vol 82 (2) ◽  
pp. 474-488
Author(s):  
MOSHE JARDEN ◽  
ALEXANDRA SHLAPENTOKH

AbstractWe discuss the connection between decidability of a theory of a large algebraic extensions of ${\Bbb Q}$ and the recursiveness of the field as a subset of a fixed algebraic closure. In particular, we prove that if an algebraic extension K of ${\Bbb Q}$ has a decidable existential theory, then within any fixed algebraic closure $\widetilde{\Bbb Q}$ of ${\Bbb Q}$, the field K must be conjugate over ${\Bbb Q}$ to a field which is recursive as a subset of the algebraic closure. We also show that for each positive integer e there are infinitely many e-tuples $\sigma \in {\text{Gal}}\left( {\Bbb Q} \right)^e $ such that the field $\widetilde{\Bbb Q}\left( \sigma \right)$ is primitive recursive in $\widetilde{\Bbb Q}$ and its elementary theory is primitive recursively decidable. Moreover, $\widetilde{\Bbb Q}\left( \sigma \right)$ is PAC and ${\text{Gal}}\left( {\widetilde{\Bbb Q}\left( \sigma \right)} \right)$ is isomorphic to the free profinite group on e generators.


2017 ◽  
Vol 234 ◽  
pp. 46-86
Author(s):  
MOSHE JARDEN ◽  
SEBASTIAN PETERSEN

Let$K$be a finitely generated extension of$\mathbb{Q}$, and let$A$be a nonzero abelian variety over$K$. Let$\tilde{K}$be the algebraic closure of$K$, and let$\text{Gal}(K)=\text{Gal}(\tilde{K}/K)$be the absolute Galois group of$K$equipped with its Haar measure. For each$\unicode[STIX]{x1D70E}\in \text{Gal}(K)$, let$\tilde{K}(\unicode[STIX]{x1D70E})$be the fixed field of$\unicode[STIX]{x1D70E}$in$\tilde{K}$. We prove that for almost all$\unicode[STIX]{x1D70E}\in \text{Gal}(K)$, there exist infinitely many prime numbers$l$such that$A$has a nonzero$\tilde{K}(\unicode[STIX]{x1D70E})$-rational point of order$l$. This completes the proof of a conjecture of Geyer–Jarden from 1978 in characteristic 0.


2020 ◽  
Vol 100 (4) ◽  
pp. 160-167
Author(s):  
Aibat Yeshkeyev ◽  
◽  
N.V. Popova

This article discusses the problems of that part of Model Theory that studies the properties of countable models of inductive theories with additional properties, or, in other words, Jonsson theories. The characteristic features are analyzed on the basis of a review of works devoted to research in the field of the study of Jonsson theories and enough examples are given to conclude that the vast area of Jonsson theories is relevant to almost all branches of algebra. This article also discusses some combinations of Jonsson theories, presents the concepts of Jonsson theory, elementary theory, core Jonsson theories, as well as their combinations that admit a core model in the class of existentially closed models of this theory. The concepts of convexity, perfectness of theory semantic model, existentially closed model, algebraic primeness of model of the considered theory, as well as the criterion of perfection and the concept of rheostat are considered in this article. On the basis of the research carried out, the authors formulated and proved a theorem about the (∇1, ∇2) − cl coreness of the model for some perfect, convex, complete for existential sentences, existentially prime Jonsson theory T.


Sign in / Sign up

Export Citation Format

Share Document