The McKinsey axiom is not canonical

1991 ◽  
Vol 56 (2) ◽  
pp. 554-562 ◽  
Author(s):  
Robert Goldblatt

The logic KM is the smallest normal modal logic that includes the McKinsey axiomIt is shown here that this axiom is not valid in the canonical frame for KM, answering a question first posed in the Lemmon-Scott manuscript [Lemmon, 1966].The result is not just an esoteric counterexample: apart from interest generated by the long delay in a solution being found, the problem has been of historical importance in the development of our understanding of intensional model theory, and is of some conceptual significance, as will now be explained.The relational semantics for normal modal logics first appeared in [Kripke, 1963], where a number of well-known systems were shown to be characterised by simple first-order conditions on binary relations (frames). This phenomenon was systematically investigated in [Lemmon, 1966], which introduced the technique of associating with each logic L a canonical frame which invalidates every nontheorem of L. If, in addition, each L-theorem is valid in , then L is said to be canonical. The problem of showing that L is determined by some validating condition C, meaning that the L-theorems are precisely those formulae valid in all frames satisfying C, can be solved by showing that satisfies C—in which case canonicity is also established. Numerous cases were studied, leading to the definition of a first-order condition Cφ associated with each formula φ of the formwhere Ψ is a positive modal formula.

1975 ◽  
Vol 40 (1) ◽  
pp. 55-58 ◽  
Author(s):  
J. F. A. K. van Benthem

Consider modal propositional formulae, constructed using proposition-letters, connectives and the modal operators □ and ⋄. The semantic structures are frames, i.e., pairs <W, R> with R ⊆ W2. Let F, V be variables ranging respectively over frames and functions from the set of proposition-letters into the powerset of W. Then the relationmay be defined, for arbitrary formulae α, following the Kripke truth-definition. From this relation we may further defineNow, to every modal formula α there corresponds some property Pα of R. A particular example is obtained by considering the well-known translation of modal formulae into formulae of monadic second-order logic with a single binary first-order predicate. For these particular Pα we havefor all F and w ∈ W. These formulae Pα are, however, rather intractable and more convenient ones can often be found. An especially interesting case occurs when Pα may be taken to be some first-order formula. For example, it can be seen thatfor all F and w ∈ W. It is customary to talk about a related correspondence, namely when for all F we haveNote that this correspondence holds whenever the first one above holds.


1939 ◽  
Vol 4 (2) ◽  
pp. 77-79 ◽  
Author(s):  
C. H. Langford

It is known that the usual definition of a dense series without extreme elements is complete with respect to first-order functions, in the sense that any first-order function on the base of a set of postulates defining such a series either is implied by the postulates or is inconsistent with them. It is here understood, in accordance with the usual convention, that when we speak of a function on the base , the function shall be such as to place restrictions only upon elements belonging to the class determined by f; or, more exactly, every variable with a universal prefix shall occur under the hypothesis that its values satisfy f, while every variable with an existential prefix shall have this condition categorically imposed upon it.Consider a set of postulates defining a dense series without extreme elements, and add to this set the condition of Dedekind section, to be formulated as follows. Let the conjunction of the three functions,be written H(ϕ), where the free variables f and g, being parameters throughout, are suppressed. This is the hypothesis of Dedekind's condition, and the conclusion iswhich may be written C(ϕ).


1984 ◽  
Vol 29 (3) ◽  
pp. 365-376 ◽  
Author(s):  
I.L. Humberstone

Call a relation R⊆A2 (A some non-empty set) monadically representable when there exist F, G⊆A such that R = {(x, y) | x ∈ F ∘ y ∈ G} for some truth-functional connective ∘. This note finds a first-order condition on R which is necessary and sufficient for R to be monadically representable.


1977 ◽  
Vol 42 (4) ◽  
pp. 564-578 ◽  
Author(s):  
H. C. M. de Swart

Let IPC be the intuitionistic first-order predicate calculus. From the definition of derivability in IPC the following is clear:(1) If A is derivable in IPC, denoted by “⊦IPCA”, then A is intuitively true, that means, true according to the intuitionistic interpretation of the logical symbols. To be able to settle the converse question: “if A is intuitively true, then ⊦IPCA”, one should make the notion of intuitionistic truth more easily amenable to mathematical treatment. So we have to look then for a definition of “A is valid”, denoted by “⊨A”, such that the following holds:(2) If A is intuitively true, then ⊨ A.Then one might hope to be able to prove(3) If ⊨ A, then ⊦IPCA.If one would succeed in finding a notion of “⊨ A”, such that all the conditions (1), (2) and (3) are satisfied, then the chain would be closed, i.e. all the arrows in the scheme below would hold.Several suggestions for ⊨ A have been made in the past: Topological and algebraic interpretations, see Rasiowa and Sikorski [1]; the intuitionistic models of Beth, see [2] and [3]; the interpretation of Grzegorczyk, see [4] and [5]; the models of Kripke, see [6] and [7]. In Thirty years of foundational studies, A. Mostowski [8] gives a review of the interpretations, proposed for intuitionistic logic, on pp. 90–98.


2019 ◽  
Vol 84 (4) ◽  
pp. 1293-1325 ◽  
Author(s):  
DHRUV MUBAYI ◽  
CAROLINE TERRY

AbstractFix an integer $r \ge 3$. We consider metric spaces on n points such that the distance between any two points lies in $\left\{ {1, \ldots ,r} \right\}$. Our main result describes their approximate structure for large n. As a consequence, we show that the number of these metric spaces is $\left\lceil {{{r + 1} \over 2}} \right\rceil ^{\left( {\matrix{ n \cr 2 \cr } } \right) + o\left( {n^2 } \right)} .$Related results in the continuous setting have recently been proved by Kozma, Meyerovitch, Peled, and Samotij [34]. When r is even, our structural characterization is more precise and implies that almost all such metric spaces have all distances at least $r/2$. As an easy consequence, when r is even, we improve the error term above from $o\left( {n^2 } \right)$ to $o\left( 1 \right)$, and also show a labeled first-order 0-1 law in the language ${\cal L}_r $, consisting of r binary relations, one for each element of $[r]$ . In particular, we show the almost sure theory T is the theory of the Fraïssé limit of the class of all finite simple complete edge-colored graphs with edge colors in $\left\{ {r/2, \ldots ,r} \right\}$.Our work can be viewed as an extension of a long line of research in extremal combinatorics to the colored setting, as well as an addition to the collection of known structures that admit logical 0-1 laws.


1974 ◽  
Vol 39 (4) ◽  
pp. 693-699 ◽  
Author(s):  
Warren D. Goldfarb

In [1] the ω-consistency of arithmetic was proved by a method which yields fine ordinal bounds for κ-consistency, κ ≥ 1. In this paper these bounds are shown to be best possible. The ω-consistency of a number-theoretic system S can be expressed thus: for all sentences ∃xM,where ProvS is the proof predicate for S, if n is a nonnegative integer then n is the formal numeral (of S) for n, and if G is a formula then ˹G˺ is the Gödel number of G. The κ-consistency of S is the restriction of (1) to Σκ0 sentences ∃xM. The proof in [1] establishes the no-counterexample interpretation of (1), that is, the existence of a constructive functional Φ such that, for all sentences ∃xM, all numbers p, and all functions f,(see [1, §2]). A functional Φ is an ω-consistency functional for S if it satisfies (2) for all sentences ∃xM, and a κ-consistency functional for S if it satisfies (2) for all Σκ0 sentences ∃xM.The systems considered in [1] are those obtained from classical first-order arithmetic Z, including the schema for definition of primitive recursive (p.r.) functions, by adjoining, for some p.r. well-founded ordering ≺ of the nonnegative integers, the axiom schemathat is, the least number principle on ≺; it is equivalent to the schema of transfinite induction on ≺.


1973 ◽  
Vol 38 (2) ◽  
pp. 177-188
Author(s):  
Lars Svenonius

By an elementary condition in the variablesx1, …, xn, we mean a conjunction of the form x1 ≤ i < j ≤ naij where each aij is one of the formulas xi = xj or xi ≠ xj. (We should add that the formula x1 = x1 should be regarded as an elementary condition in the one variable x1.)Clearly, according to this definition, some elementary conditions are inconsistent, some are consistent. For instance (in the variables x1, x2, x3) the conjunction x1 = x2 & x1 = x3 & x2 ≠ x3 is inconsistent.By an elementary combinatorial function (ex. function) we mean any function which can be given a definition of the formwhere E1(x1, …, xn), …, Ek(x1, …, xn) is an enumeration of all consistent elementary conditions in x1, …, xn, and all the numbers d1, …, dk are among 1, …, n.Examples. (1) The identity function is the only 1-ary e.c. function.(2) A useful 3-ary e.c. function will be called J. The definition is


1979 ◽  
Vol 44 (2) ◽  
pp. 184-200 ◽  
Author(s):  
Michał Krynicki ◽  
Alistair H. Lachlan

In [5] Henkin defined a quantifier, which we shall denote by QH: linking four variables in one formula. This quantifier is related to the notion of formulas in which the usual universal and existential quantifiers occur but are not linearly ordered. The original definition of QH wasHere (QHx1x2y1y2)φ is true if for every x1 there exists y1 such that for every x2 there exists y2, whose choice depends only on x2 not on x1 and y1 such that φ(x14, x2, y1, y2). Another way of writing this isIn [5] it was observed that the logic L(QH) obtained by adjoining QH defined as in (1) is more powerful than first-order logic. In particular, it turned out that the quantifier “there exist infinitely many” denoted Q0 was definable from QH because


2021 ◽  
Vol 82 (2) ◽  
Author(s):  
Robin Hirsch ◽  
Jaš Šemrl

AbstractThe motivation for using demonic calculus for binary relations stems from the behaviour of demonic turing machines, when modelled relationally. Relational composition (; ) models sequential runs of two programs and demonic refinement ($$\sqsubseteq $$ ⊑ ) arises from the partial order given by modeling demonic choice ($$\sqcup $$ ⊔ ) of programs (see below for the formal relational definitions). We prove that the class $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) of abstract $$(\le , \circ )$$ ( ≤ , ∘ ) structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $$(\le , \circ )$$ ( ≤ , ∘ ) formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) . We prove that a finite representable $$(\le , \circ )$$ ( ≤ , ∘ ) structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representation property holds for finite structures.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


Sign in / Sign up

Export Citation Format

Share Document