Rules of inference with parameters for intuitionistic logic

1992 ◽  
Vol 57 (3) ◽  
pp. 912-923 ◽  
Author(s):  
Vladimir V. Rybakov

AbstractAn algorithm recognizing admissibility of inference rules in generalized form (rules of inference with parameters or metavariables) in the intuitionistic calculus H and, in particular, also in the usual form without parameters, is presented. This algorithm is obtained by means of special intuitionistic Kripke models, which are constructed for a given inference rule. Thus, in particular, the direct solution by intuitionistic techniques of Friedman's problem is found. As a corollary an algorithm for the recognition of the solvability of logical equations in H and for constructing some solutions for solvable equations is obtained. A semantic criterion for admissibility in H is constructed.

2016 ◽  
Vol 22 (1) ◽  
pp. 1-104 ◽  
Author(s):  
MICHAEL BEESON

AbstractEuclidean geometry, as presented by Euclid, consists of straightedge-and-compass constructions and rigorous reasoning about the results of those constructions. We show that Euclidean geometry can be developed using only intuitionistic logic. This involves finding “uniform” constructions where normally a case distinction is used. For example, in finding a perpendicular to line L through point p, one usually uses two different constructions, “erecting” a perpendicular when p is on L, and “dropping” a perpendicular when p is not on L, but in constructive geometry, it must be done without a case distinction. Classically, the models of Euclidean (straightedge-and-compass) geometry are planes over Euclidean fields. We prove a similar theorem for constructive Euclidean geometry, by showing how to define addition and multiplication without a case distinction about the sign of the arguments. With intuitionistic logic, there are two possible definitions of Euclidean fields, which turn out to correspond to different versions of the parallel postulate.We consider three versions of Euclid’s parallel postulate. The two most important are Euclid’s own formulation in his Postulate 5, which says that under certain conditions two lines meet, and Playfair’s axiom (dating from 1795), which says there cannot be two distinct parallels to line L through the same point p. These differ in that Euclid 5 makes an existence assertion, while Playfair’s axiom does not. The third variant, which we call the strong parallel postulate, isolates the existence assertion from the geometry: it amounts to Playfair’s axiom plus the principle that two distinct lines that are not parallel do intersect. The first main result of this paper is that Euclid 5 suffices to define coordinates, addition, multiplication, and square roots geometrically.We completely settle the questions about implications between the three versions of the parallel postulate. The strong parallel postulate easily implies Euclid 5, and Euclid 5 also implies the strong parallel postulate, as a corollary of coordinatization and definability of arithmetic. We show that Playfair does not imply Euclid 5, and we also give some other independence results. Our independence proofs are given without discussing the exact choice of the other axioms of geometry; all we need is that one can interpret the geometric axioms in Euclidean field theory. The independence proofs use Kripke models of Euclidean field theories based on carefully constructed rings of real-valued functions. “Field elements” in these models are real-valued functions.


Author(s):  
Tobias Boege

AbstractThe gaussoid axioms are conditional independence inference rules which characterize regular Gaussian CI structures over a three-element ground set. It is known that no finite set of inference rules completely describes regular Gaussian CI as the ground set grows. In this article we show that the gaussoid axioms logically imply every inference rule of at most two antecedents which is valid for regular Gaussians over any ground set. The proof is accomplished by exhibiting for each inclusion-minimal gaussoid extension of at most two CI statements a regular Gaussian realization. Moreover we prove that all those gaussoids have rational positive-definite realizations inside every ε-ball around the identity matrix. For the proof we introduce the concept of algebraic Gaussians over arbitrary fields and of positive Gaussians over ordered fields and obtain the same two-antecedental completeness of the gaussoid axioms for algebraic and positive Gaussians over all fields of characteristic zero as a byproduct.


Author(s):  
Iaroslav Petik

This paper deals with a famous problem of epistemic logic – logical omniscience. Logical omniscience occurs in the logical systems where the axiomatics is complete and consequently an agent using inference rules knows everything about the system. Logical omniscience is a major problem due to complexity problems and the inability for adequate human reasoning modeling. It is studied both informal logic and philosophy of psychology (bounded rationality). It is important for bounded rationality because it reflects the problem of formal characterization of purely psychological mechanisms. Paper proposes to solve it using the ideas from the philosophical bounded rationality and intuitionistic logic. Special regions of deductible formulas developed according to psychologistic criterion should guide the deductive model. The method is compared to other ones presented in the literature on logical omniscience such as Hintikka’s and Vinkov and Fominuh. Views from different perspectives such as computer science and artificial intelligence are also provided.


2020 ◽  
pp. 21-52
Author(s):  
Jared Warren

What are linguistic conventions? This chapter begins by noting and setting aside philosophical accounts of social conventions stemming from Lewis’s influential treatment. It then criticizes accounts that see conventions as explicit stipulations. From there the chapter argues that conventions are syntactic rules of inference, arguing that there are scientific reasons to posit these rules as part of our linguistic competence and that we need to include both bilateralist and open-ended inference rules for a full account. The back half of the chapter aims to naturalize inference rule-following by providing functionalist-dispositionalist approaches to our attitudes, inference, and inference-rule–following, addressing Kripkenstein’s arguments and several other concerns along the way.


1969 ◽  
Vol 33 (4) ◽  
pp. 560-564 ◽  
Author(s):  
Raymond M. Smullyan

The real importance of cut-free proofs is not the elimination of cuts per se, but rather that such proofs obey the subformula principle. In this paper we accomplish this latter objective in a different manner.In the usual formulations of Gentzen systems, there is only one axiom scheme; all the other postulates are inference rules. By contrast, we consider here some Gentzen type axiom systems for propositional logic and Quantification Theory in which there is only one inference rule; all the other postulates are axiom schemes. This admits of an unusually elegant axiomatization of logic.


1988 ◽  
Vol 53 (1) ◽  
pp. 200-211 ◽  
Author(s):  
Mitsuhiro Okada

The purpose of this paper is to study logical implications which are much weaker than the implication of intuitionistic logic.In §1 we define the system SI (system of Simple Implication) which is obtained from intuitionistic logic by restricting the inference rules of intuitionistic implication. The implication of the system SI is called the “simple implication” and denoted by ⊃, where the simple implication ⊃ has the following properties:(1) The simple implication ⊃ is much weaker than the usual intuitionistic implication.(2) The simple implication ⊃ can be interpreted by the notion of provability, i.e., we have a very simple semantics for SI so that a sentence A ⊃ B is interpreted as “there exists a proof of B from A”.(3) The full-strength intuitionistic implication ⇒ is definable in a weak second order extension of SI; in other words, it is definable by help of a variant of the weak comprehension schema and the simple implication ⊃. Therefore, though SI is much weaker than the intuitionistic logic, the second order extension of SI is equivalent to the second order extension of the intuitionistic logic.(4) The simple implication is definable in a weak modal logic MI by the use of the modal operator and the intuitionistic implication ⇒ with full strength. More precisely, A ⊃ B is defined as the strict implication of the form ◽(A ⇒ B).In §1, we show (3) and (4). (2) is shown in §2 in a more general setting.Semantics by introduction rules of logical connectives has been studied from various points of view by many authors (e.g. Gentzen [4], Lorentzen [5], Dummett [1], [2], Prawitz [8]. Martin-Löf [7], Maehara [6]). Among them Gentzen (in §§10 and 11 of [4]) introduced such a semantics in order to justify logical inferences and the mathematical induction rule. He observed that all of the inference rules of intuitionistic arithmetic, except for those on implication and negation, are justified by means of his semantics, but justification of the inference rules on implication and negation contains a circular argument for the interpretation by introduction rules, where the natural interpretation of A ⊃ B by ⊃-introduction rule is “there exists a proof of B from A ” (cf. §11 of Gentzen [4]).


1984 ◽  
Vol 49 (4) ◽  
pp. 1339-1349 ◽  
Author(s):  
D. Van Dalen

Among the more traditional semantics for intuitionistic logic the Beth and the Kripke semantics seem well-suited for direct manipulations required for the derivation of metamathematical results. In particular Smoryński demonstrated the usefulness of Kripke models for the purpose of obtaining closure properties for first-order arithmetic, [S], and second-order arithmetic, [J-S]. Weinstein used similar techniques to handle intuitionistic analysis, [W]. Since, however, Beth-models seem to lend themselves better for dealing with analysis, cf. [D], we have developed a somewhat more liberal semantics, that shares the features of both Kripke and Beth semantics, in order to obtain analogues of Smoryński's collecting operations, which we will call Smoryński-glueing, in line with the categorical tradition.


Author(s):  
V.V. Rimatskiy ◽  

Firstly semantic property of nonstandart logics were described by formulas which are peculiar to studied a models in general, and do not take to consideration a variable conditions and a changing assumptions. Evidently the notion of inference rule generalizes the notion of formulas and brings us more flexibility and more expressive power to model human reasoning and computing. In 2000-2010 a few results on describing of explicit bases for admissible inference rules for nonstandard logics (S4, K4, H etc.) appeared. The key property of these logics was weak co-cover property. Beside the improvement of deductive power in logic, an admissible rule are able to describe some semantic property of given logic. We describe a semantic property of modal logics in term of admissibility of given set of inference rules. We prove that modal logic over logic 𝐺𝐿 enjoys weak co-cover property iff all given rules are admissible for logic.


2007 ◽  
Vol 72 (3) ◽  
pp. 738-754 ◽  
Author(s):  
Kazushige Terui

AbstractConsider a general class of structural inference rules such as exchange, weakening, contraction and their generalizations. Among them, some are harmless but others do harm to cut elimination. Hence it is natural to ask under which condition cut elimination is preserved when a set of structural rules is added to a structure-free logic. The aim of this work is to give such a condition by using algebraic semantics.We consider full Lambek calculus (FL), i.e., intuitionistic logic without any structural rules, as our basic framework. Residuated lattices are the algebraic structures corresponding to FL. In this setting, we introduce a criterion, called the propagation property, that can be stated both in syntactic and algebraic terminologies. We then show that, for any set ℛ of structural rules, the cut elimination theorem holds for FL enriched with ℛ if and only if ℛ satisfies the propagation property.As an application, we show that any set ℛ of structural rules can be “completed” into another set ℛ*, so that the cut elimination theorem holds for FL enriched with ℛ*. while the provability remains the same.


Sign in / Sign up

Export Citation Format

Share Document