scholarly journals Museum of Outstanding Figures in Ukrainian Culture

Author(s):  
Iaroslav Petik

This paper deals with a famous problem of epistemic logic – logical omniscience. Logical omniscience occurs in the logical systems where the axiomatics is complete and consequently an agent using inference rules knows everything about the system. Logical omniscience is a major problem due to complexity problems and the inability for adequate human reasoning modeling. It is studied both informal logic and philosophy of psychology (bounded rationality). It is important for bounded rationality because it reflects the problem of formal characterization of purely psychological mechanisms. Paper proposes to solve it using the ideas from the philosophical bounded rationality and intuitionistic logic. Special regions of deductible formulas developed according to psychologistic criterion should guide the deductive model. The method is compared to other ones presented in the literature on logical omniscience such as Hintikka’s and Vinkov and Fominuh. Views from different perspectives such as computer science and artificial intelligence are also provided.

Author(s):  
Juveriya Afreen

Abstract-- With increase in complexity of data, security, it is difficult for the individuals to prevent the offence. Thus, by using any automation or software it’s not possible by only using huge fixed algorithms to overcome this. Thus, we need to look for something which is robust and feasible enough. Hence AI plays an epitome role to defense such violations. In this paper we basically look how human reasoning along with AI can be applied to uplift cyber security.


2021 ◽  
pp. 1-13
Author(s):  
Lamiae Benhayoun ◽  
Daniel Lang

BACKGROUND: The renewed advent of Artificial Intelligence (AI) is inducing profound changes in the classic categories of technology professions and is creating the need for new specific skills. OBJECTIVE: Identify the gaps in terms of skills between academic training on AI in French engineering and Business Schools, and the requirements of the labour market. METHOD: Extraction of AI training contents from the schools’ websites and scraping of a job advertisements’ website. Then, analysis based on a text mining approach with a Python code for Natural Language Processing. RESULTS: Categorization of occupations related to AI. Characterization of three classes of skills for the AI market: Technical, Soft and Interdisciplinary. Skills’ gaps concern some professional certifications and the mastery of specific tools, research abilities, and awareness of ethical and regulatory dimensions of AI. CONCLUSIONS: A deep analysis using algorithms for Natural Language Processing. Results that provide a better understanding of the AI capability components at the individual and the organizational levels. A study that can help shape educational programs to respond to the AI market requirements.


2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


2021 ◽  
Vol 14 ◽  
pp. 263177452199305
Author(s):  
Hemant Goyal ◽  
Rupinder Mann ◽  
Zainab Gandhi ◽  
Abhilash Perisetti ◽  
Zhongheng Zhang ◽  
...  

The role of artificial intelligence and its applications has been increasing at a rapid pace in the field of gastroenterology. The application of artificial intelligence in gastroenterology ranges from colon cancer screening and characterization of dysplastic and neoplastic polyps to the endoscopic ultrasonographic evaluation of pancreatic diseases. Artificial intelligence has been found to be useful in the evaluation and enhancement of the quality measure for endoscopic retrograde cholangiopancreatography. Similarly, artificial intelligence techniques like artificial neural networks and faster region-based convolution network are showing promising results in early and accurate diagnosis of pancreatic cancer and its differentiation from chronic pancreatitis. Other artificial intelligence techniques like radiomics-based computer-aided diagnosis systems could help to differentiate between various types of cystic pancreatic lesions. Artificial intelligence and computer-aided systems also showing promising results in the diagnosis of cholangiocarcinoma and the prediction of choledocholithiasis. In this review, we discuss the role of artificial intelligence in establishing diagnosis, prognosis, predicting response to treatment, and guiding therapeutics in the pancreaticobiliary system.


2020 ◽  
Vol 9 (10) ◽  
pp. 3313 ◽  
Author(s):  
Hemant Goyal ◽  
Rupinder Mann ◽  
Zainab Gandhi ◽  
Abhilash Perisetti ◽  
Aman Ali ◽  
...  

Globally, colorectal cancer is the third most diagnosed malignancy. It causes significant mortality and morbidity, which can be reduced by early diagnosis with an effective screening test. Integrating artificial intelligence (AI) and computer-aided detection (CAD) with screening methods has shown promising colorectal cancer screening results. AI could provide a “second look” for endoscopists to decrease the rate of missed polyps during a colonoscopy. It can also improve detection and characterization of polyps by integration with colonoscopy and various advanced endoscopic modalities such as magnifying narrow-band imaging, endocytoscopy, confocal endomicroscopy, laser-induced fluorescence spectroscopy, and magnifying chromoendoscopy. This descriptive review discusses various AI and CAD applications in colorectal cancer screening, polyp detection, and characterization.


2021 ◽  
Vol 1051 (1) ◽  
pp. 012033
Author(s):  
Taufiq Khairi Ahmad Khairuddin ◽  
Nurhazirah Mohamad Yunos ◽  
Suzarina Ahmed Sukri

2016 ◽  
Author(s):  
Falk Lieder ◽  
Tom Griffiths

Many contemporary accounts of human reasoning assume that the mind is equipped with multiple heuristics that could be deployed to perform a given task. This raises the question how the mind determines when to use which heuristic. To answer this question, we developed a rational model of strategy selection, based on the theory of rational metareasoning developed in the artificial intelligence literature. According to our model people learn to efficiently choose the strategy with the best cost-benefit tradeoff by learning a predictive model of each strategy’s performance. We found that our model can provide a unifying explanation for classic findings from domains ranging from decision-making to problem-solving and arithmetic by capturing the variability of people’s strategy choices, their dependence on task and context, and their development over time. Systematic model comparisons supported our theory, and four new experiments confirmed its distinctive predictions. Our findings suggest that people gradually learn to make increasingly more rational use of fallible heuristics. This perspective reconciles the two poles of the debate about human rationality by integrating heuristics and biases with learning and rationality.


Sign in / Sign up

Export Citation Format

Share Document