THE INFLUENCE OF LOCAL SURFACE WINDS ON AIR POLLUTION CONCENTRATIONS AT CURBSIDE MONITORING STATIONS AND ITS CONSEQUENCES FOR MODELLING

2005 ◽  
Vol 24 ◽  
pp. 3
Author(s):  
Dirks ◽  
Sturman
Author(s):  
Christian Acal ◽  
Ana M. Aguilera ◽  
Annalina Sarra ◽  
Adelia Evangelista ◽  
Tonio Di Battista ◽  
...  

AbstractFaced with novel coronavirus outbreak, the most hard-hit countries adopted a lockdown strategy to contrast the spread of virus. Many studies have already documented that the COVID-19 control actions have resulted in improved air quality locally and around the world. Following these lines of research, we focus on air quality changes in the urban territory of Chieti-Pescara (Central Italy), identified as an area of criticality in terms of air pollution. Concentrations of $$\hbox {NO}_{{2}}$$ NO 2 , $$\hbox {PM}_{{10}}$$ PM 10 , $$\hbox {PM}_{2.5}$$ PM 2.5 and benzene are used to evaluate air pollution changes in this Region. Data were measured by several monitoring stations over two specific periods: from 1st February to 10 th March 2020 (before lockdown period) and from 11st March 2020 to 18 th April 2020 (during lockdown period). The impact of lockdown on air quality is assessed through functional data analysis. Our work makes an important contribution to the analysis of variance for functional data (FANOVA). Specifically, a novel approach based on multivariate functional principal component analysis is introduced to tackle the multivariate FANOVA problem for independent measures, which is reduced to test multivariate homogeneity on the vectors of the most explicative principal components scores. Results of the present study suggest that the level of each pollutant changed during the confinement. Additionally, the differences in the mean functions of all pollutants according to the location and type of monitoring stations (background vs traffic), are ascribable to the $$\hbox {PM}_{{10}}$$ PM 10 and benzene concentrations for pre-lockdown and during-lockdown tenure, respectively. FANOVA has proven to be beneficial to monitoring the evolution of air quality in both periods of time. This can help environmental protection agencies in drawing a more holistic picture of air quality status in the area of interest.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Josiah L. Kephart ◽  
Magdalena Fandiño-Del-Rio ◽  
Kirsten Koehler ◽  
Antonio Bernabe-Ortiz ◽  
J. Jaime Miranda ◽  
...  

2019 ◽  
Vol 12 (5) ◽  
pp. 2933-2948 ◽  
Author(s):  
Shan Xu ◽  
Bin Zou ◽  
Yan Lin ◽  
Xiuge Zhao ◽  
Shenxin Li ◽  
...  

Abstract. Fine particulate matter (PM2.5) is of great concern to the public due to its significant risk to human health. Numerous methods have been developed to estimate spatial PM2.5 concentrations in unobserved locations due to the sparse number of fixed monitoring stations. Due to an increase in low-cost sensing for air pollution monitoring, crowdsourced monitoring of exposure control has been gradually introduced into cities. However, the optimal mapping method for conventional sparse fixed measurements may not be suitable for this new high-density monitoring approach. This study presents a crowdsourced sampling campaign and strategies of method selection for 100 m scale PM2.5 mapping in an intra-urban area of China. During this process, PM2.5 concentrations were measured by laser air quality monitors through a group of volunteers during two 5 h periods. Three extensively employed modelling methods (ordinary kriging, OK; land use regression, LUR; and regression kriging, RK) were adopted to evaluate the performance. An interesting finding is that PM2.5 concentrations in micro-environments varied in the intra-urban area. These local PM2.5 variations can be easily identified by crowdsourced sampling rather than national air quality monitoring stations. The selection of models for fine-scale PM2.5 concentration mapping should be adjusted according to the changing sampling and pollution circumstances. During this project, OK interpolation performs best in conditions with non-peak traffic situations during a lightly polluted period (holdout validation R2: 0.47–0.82), while the RK modelling can perform better during the heavily polluted period (0.32–0.68) and in conditions with peak traffic and relatively few sampling sites (fewer than ∼100) during the lightly polluted period (0.40–0.69). Additionally, the LUR model demonstrates limited ability in estimating PM2.5 concentrations on very fine spatial and temporal scales in this study (0.04–0.55), which challenges the traditional point about the good performance of the LUR model for air pollution mapping. This method selection strategy provides empirical evidence for the best method selection for PM2.5 mapping using crowdsourced monitoring, and this provides a promising way to reduce the exposure risks for individuals in their daily life.


2010 ◽  
Author(s):  
Despina Deligiorgi ◽  
Kostas Philippopoulos ◽  
Lelouda Thanou ◽  
Georgios Karvounis ◽  
Angelos Angelopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document