The expected population size in a cell-size-dependent branching process

1981 ◽  
Vol 18 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Aidan Sudbury

In cell-size-dependent growth the probabilistic rate of division of a cell into daughter-cells and the rate of increase of its size depend on its size. In this paper the expected number of cells in the population at time t is calculated for a variety of models, and it is shown that population growths slower and faster than exponential are both possible. When the cell sizes are bounded conditions are given for exponential growth.

1981 ◽  
Vol 18 (01) ◽  
pp. 65-75 ◽  
Author(s):  
Aidan Sudbury

In cell-size-dependent growth the probabilistic rate of division of a cell into daughter-cells and the rate of increase of its size depend on its size. In this paper the expected number of cells in the population at time t is calculated for a variety of models, and it is shown that population growths slower and faster than exponential are both possible. When the cell sizes are bounded conditions are given for exponential growth.


2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


2014 ◽  
Author(s):  
Ariel Amir

Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and inter-division time distributions, and the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.


2016 ◽  
Author(s):  
Cesar Augusto Vargas-Garcia ◽  
Abhyudai Singh

A ubiquitous feature of all living cells is their growth over time followed by division into two daughter cells. How a population of genetically identical cells maintains size homeostasis, i.e., a narrow distribution of cell size, is an intriguing fundamental problem. We model size using a stochastic hybrid system, where a cell grows exponentially over time and probabilistic division events are triggered at discrete time intervals. Moreover, whenever these events occur, size is randomly partitioned among daughter cells. We first consider a scenario, where a timer (i.e., cell-cycle clock) that measures the time since the last division event regulates cellular growth and the rate of cell division. Analysis reveals that such a timer-driven system cannot achieve size homeostasis, in the sense that, the cell-to-cell size variation grows unboundedly with time. To explore biologically meaningful mechanisms for controlling size we consider three different classes of models: i) a size-dependent growth rate and timer-dependent division rate; ii) a constant growth rate and size-dependent division rate and iii) a constant growth rate and division rate that depends both on the cell size and timer. We show that each of these strategies can potentially achieve bounded intercellular size variation, and derive closed-form expressions for this variation in terms of underlying model parameters. Finally, we discuss how different organisms have adopted the above strategies for maintaining cell size homeostasis.


1972 ◽  
Vol 9 (04) ◽  
pp. 687-696 ◽  
Author(s):  
Peter Clifford ◽  
Aidan Sudbury

In this paper is developed a theory of branching processes in which the division probability and rate of growth of cells depend only on their ‘size’ and in which ‘size’ is shared between daughters. Specific results are obtained in a linear case including the calculation of the correlation coefficient for the life spans of sisters.


2013 ◽  
Vol 45 (03) ◽  
pp. 719-741 ◽  
Author(s):  
Gerold Alsmeyer ◽  
Sören Gröttrup

We consider a host-parasite model for a population of cells that can be of two types, A or B, and exhibits unilateral reproduction: while a B-cell always splits into two cells of the same type, the two daughter cells of an A-cell can be of any type. The random mechanism that describes how parasites within a cell multiply and are then shared into the daughter cells is allowed to depend on the hosting mother cell as well as its daughter cells. Focusing on the subpopulation of A-cells and its parasites, our model differs from the single-type model recently studied by Bansaye (2008) in that the sharing mechanism may be biased towards one of the two types. Our main results are concerned with the nonextinctive case and provide information on the behavior, as n → ∞, of the number of A-parasites in generation n and the relative proportion of A- and B-cells in this generation which host a given number of parasites. As in Bansaye (2008), proofs will make use of a so-called random cell line which, when conditioned to be of type A, behaves like a branching process in a random environment.


2021 ◽  
Author(s):  
Masahito Tanaka ◽  
Shigehiko Yumura

Abstract After a cell divides into two daughter cells, the total cell surface area of the daughtercells should increase to the original size to maintain cell size homeostasis in a single cellcycle. Previously, three models have been proposed to explain the regulation of cell sizehomeostasis: sizer, timer, and adder models. Here, we precisely measured the total cellsurface area of Dictyostelium cells in a whole cell cycle by using the agar-overlaymethod, which eliminated the influence of surface membrane reservoirs, such asmicrovilli and membrane winkles. The total cell surface area linearly increased duringinterphase, slightly decreased at the metaphase, and then increased by approximately20% during cytokinesis. From the analysis of the added surface area, we concluded thatthe cell size was regulated by the near-adder model in interphase and by the timer modelin the mitotic phase. The adder model in the interphase is not caused by a simple cellmembrane addition, but is more dynamic due to the rapid cell membrane turnover. Wepropose a ‘dynamic adder model’ to explain cell size homeostasis in the interphase.


Science ◽  
2021 ◽  
Vol 372 (6547) ◽  
pp. 1176-1181
Author(s):  
Marco D’Ario ◽  
Rafael Tavares ◽  
Katharina Schiessl ◽  
Bénédicte Desvoyes ◽  
Crisanto Gutierrez ◽  
...  

How eukaryotic cells assess and maintain sizes specific for their species and cell type remains unclear. We show that in the Arabidopsis shoot stem cell niche, cell size variability caused by asymmetric divisions is corrected by adjusting the growth period before DNA synthesis. KIP-related protein 4 (KRP4) inhibits progression to DNA synthesis and associates with mitotic chromosomes. The F BOX-LIKE 17 (FBL17) protein removes excess KRP4. Consequently, daughter cells are born with comparable amounts of KRP4. Inhibitor dilution models predicted that KRP4 inherited through chromatin would robustly regulate size, whereas inheritance of excess free KRP4 would disrupt size homeostasis, as confirmed by mutant analyses. We propose that a cell cycle regulator, stabilized by association with mitotic chromosomes, reads DNA content as a cell size–independent scale.


2013 ◽  
Vol 45 (3) ◽  
pp. 719-741
Author(s):  
Gerold Alsmeyer ◽  
Sören Gröttrup

We consider a host-parasite model for a population of cells that can be of two types, A or B, and exhibits unilateral reproduction: while a B-cell always splits into two cells of the same type, the two daughter cells of an A-cell can be of any type. The random mechanism that describes how parasites within a cell multiply and are then shared into the daughter cells is allowed to depend on the hosting mother cell as well as its daughter cells. Focusing on the subpopulation of A-cells and its parasites, our model differs from the single-type model recently studied by Bansaye (2008) in that the sharing mechanism may be biased towards one of the two types. Our main results are concerned with the nonextinctive case and provide information on the behavior, as n → ∞, of the number of A-parasites in generation n and the relative proportion of A- and B-cells in this generation which host a given number of parasites. As in Bansaye (2008), proofs will make use of a so-called random cell line which, when conditioned to be of type A, behaves like a branching process in a random environment.


Sign in / Sign up

Export Citation Format

Share Document