MIGRATION, TRANSPORTATION, CAPITAL, AND THE STATE IN THE GREAT LAKES BASIN, 1815–1890

2018 ◽  
pp. 29-77 ◽  
Author(s):  
JOHN J. BUKOWCZYK
Water Policy ◽  
2011 ◽  
Vol 13 (1) ◽  
pp. 69-86 ◽  
Author(s):  
Alan D. Steinman ◽  
James R. Nicholas ◽  
Paul W. Seelbach ◽  
Jon W. Allan ◽  
Frank Ruswick

The availability and use of freshwater is a growing concern in the United States and around the globe. Despite apparently abundant water resources, several conflicts over water use have emerged in the Great Lakes region and the State of Michigan. These conflicts resulted in state legislation that both addresses water withdrawal from the Great Lakes Basin and requires the State of Michigan to begin a process to address the sustainability of water resources. The former resulted in Michigan's support of the Great Lakes-St. Lawrence River Water Resources Compact, whereas the latter resulted in the formation of a Groundwater Conservation Advisory Council. This paper focuses primarily on the Council, describing its formation, and the products it generated. In particular, we focus on the development of indicators of sustainable use of water, the creation of a water withdrawal assessment process to determine if a proposed withdrawal will create an adverse resource impact in the state, and how the lessons learned in Michigan may be applied to other units of government addressing similar issues. Attention is also given to the Compact, as it provides important context for the Council's formation.


2021 ◽  
Vol 13 (13) ◽  
pp. 7274
Author(s):  
Joshua T. Fergen ◽  
Ryan D. Bergstrom

Social vulnerability refers to how social positions affect the ability to access resources during a disaster or disturbance, but there is limited empirical examination of its spatial patterns in the Great Lakes Basin (GLB) region of North America. In this study, we map four themes of social vulnerability for the GLB by using the Center for Disease Control’s Social Vulnerability Index (CDC SVI) for every county in the basin and compare mean scores for each sub-basin to assess inter-basin differences. Additionally, we map LISA results to identify clusters of high and low social vulnerability along with the outliers across the region. Results show the spatial patterns depend on the social vulnerability theme selected, with some overlapping clusters of high vulnerability existing in Northern and Central Michigan, and clusters of low vulnerability in Eastern Wisconsin along with outliers across the basins. Differences in these patterns also indicate the existence of an urban–rural dimension to the variance in social vulnerabilities measured in this study. Understanding regional patterns of social vulnerability help identify the most vulnerable people, and this paper presents a framework for policymakers and researchers to address the unique social vulnerabilities across heterogeneous regions.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 430 ◽  
Author(s):  
Ronald S. Zalesny ◽  
Andrej Pilipović ◽  
Elizabeth R. Rogers ◽  
Joel G. Burken ◽  
Richard A. Hallett ◽  
...  

Poplar remediation systems are ideal for reducing runoff, cleaning groundwater, and delivering ecosystem services to the North American Great Lakes and globally. We used phyto-recurrent selection (PRS) to establish sixteen phytoremediation buffer systems (phyto buffers) (buffer groups: 2017 × 6; 2018 × 5; 2019 × 5) throughout the Lake Superior and Lake Michigan watersheds comprised of twelve PRS-selected clones each year. We tested for differences in genotypes, environments, and their interactions for health, height, diameter, and volume from ages one to four years. All trees had optimal health. Mean first-, second-, and third-year volume ranged from 71 ± 26 to 132 ± 39 cm3; 1440 ± 575 to 5765 ± 1132 cm3; and 8826 ± 2646 to 10,530 ± 2110 cm3, respectively. Fourth-year mean annual increment of 2017 buffer group trees ranged from 1.1 ± 0.7 to 7.8 ± 0.5 Mg ha−1 yr−1. We identified generalist varieties with superior establishment across a broad range of buffers (‘DM114’, ‘NC14106’, ‘99038022’, ‘99059016’) and specialist clones uniquely adapted to local soil and climate conditions (‘7300502’, ‘DN5’, ‘DN34’, ‘DN177’, ‘NM2’, ‘NM5’, ‘NM6’). Using generalists and specialists enhances the potential for phytoremediation best management practices that are geographically robust, being regionally designed yet globally relevant.


Sign in / Sign up

Export Citation Format

Share Document