scholarly journals Effect of adhesion boosters on indirect bracket bonding

2013 ◽  
Vol 84 (1) ◽  
pp. 171-176 ◽  
Author(s):  
Lylian Kazumi Kanashiro ◽  
Julissa Janet Robles-Ruíz ◽  
Ana Lidia Ciamponi ◽  
Igor Studart Medeiros ◽  
Gladys Cristina Dominguez ◽  
...  

ABSTRACT Objective: To determine the influence of two adhesion boosters on shear bond strength and on the bond failure location of indirectly bonded brackets. Materials and Methods: Sixty bovine incisors were randomly divided into three groups (n  =  20), and their buccal faces were etched using 37% phosphoric acid. In group 1 (control), brackets were indirectly bonded using only Sondhi adhesive. In groups 2 and 3, the adhesion boosters Enhance Adhesion Booster and Assure Universal Bonding Resin, respectively, were applied before bonding with Sondhi. Maximum bond strength was measured with a universal testing machine, and the location of bond failure was evaluated using the Adhesive Remnant Index (ARI). One-way analysis of variance followed by the Tukey test (P < .05) was used to compare the shear bond strength among groups, and the differences in ARI scores were evaluated using the Kruskal-Wallis test (P < .05). The Pearson correlation coefficient was calculated to determine whether there was any correlation between bond strength and ARI scores. Results: The mean shear bond strength in group 3 was significantly higher (P < .01) than in the other groups. Evaluation of the locations of bond failure revealed differences (P < .05) among the three groups. There was a moderate correlation between bond strength and ARI scores within group 3 (r  =  0.5860, P < .01). Conclusion: In vitro shear bond strength was acceptable in all groups. The use of the Assure adhesion booster significantly increased both the shear bond strength of indirectly bonded brackets and the amount of adhesive that remained on the enamel after bracket debonding.

2012 ◽  
Vol 83 (1) ◽  
pp. 152-157 ◽  
Author(s):  
Erika L. Silva-Benítez ◽  
Veronica Zavala-Alonso ◽  
Gabriel A. Martinez-Castanon ◽  
Juan P. Loyola-Rodriguez ◽  
Nuria Patiño-Marin ◽  
...  

Abstract Objective: To study the shear bond strength (SBS), sites of failure, and micromorphology of bonded molar tubes used on teeth affected by dental fluorosis. Materials and Methods: This in vitro study included 140 first molars classified according to Dean's index for dental fluorosis. Samples were divided into seven groups: (1) healthy teeth etched for 15 seconds, (2) teeth with moderate fluorosis (MOF) etched for 15 seconds, (3) teeth with MOF etched for 150 seconds, (4) teeth with MOF microabrasion etched for 15 seconds, (5) teeth with severe fluorosis (SEF) etched for 15 seconds, (6) teeth with SEF etched for 150 seconds, and (7) teeth with SEF microabrasion etched for 15 seconds. All samples were incubated and were then submitted to the SBS test and evaluated with the modified adhesive remnant index (ARI) and analyzed by using a scanning electronic microscope. Results: The SBS mean value for healthy enamel was 20 ± 10.2 MPa. For the group with MOF, the etched 150-second mean value was the highest (19 ± 7.6 MPa); for the group with SEF treated with microabrasion and etched for 15 seconds, the mean value was (13 ± 4.1 MPa). Significant differences (P ≤ .05) were found in the ARI between healthy and fluorosed groups. Conclusions: Fluorotic enamel affects the adhesion of bonded molar tubes. The use of overetching in cases of MOF and the combination of microabrasion and etching in SEF provides a suitable adhesion for fixed appliance therapy.


2020 ◽  
Vol 44 (4) ◽  
pp. 234-239
Author(s):  
Latifa Alhowaish ◽  
Fouad Salama ◽  
Mohammed Al-Harbi ◽  
Mohamad Abumoatti

Aim: The purpose of this in vitro study was to assess the shear bond strength (SBS) and bond failure types of a resin-composite to six pulp-capping materials used in primary teeth. Study design: Eight-disc specimens from each pulp-capping material (6 groups) to bond to Filtek™ Z350 XT Flowable using a standard PVC tube (2×2mm). All groups were prepared according to the instruction of the manufacturer. The SBS was measured with a crosshead speed of 0.5 mm/min using a universal testing machine. Failure mode evaluation was completed using Digital Microscope by two independent examiners. Results: Urbical LC® showed the highest SBS (Mean±SD) followed by ProRoot® MTA and TheraCal LC® (35.422±2.910, 22.114±2.515, and 21.175±1.983) respectively. ANOVA showed significant differences between all groups (P=0.0001). Urbical LC® and Photac™ Fil QuickAplicap™ were statistically significant different from all other pulp-capping materials groups. ProRoot® MTA was statistically significant different than Biodentine® (P=0.0001) and Photac™ Fil (P=0.0001). The total number of bond failure was recorded for cohesive B failure/cohesive in the pulp-capping material (14) and adhesive failure (14). Conclusion: Most of the tested pulp-capping materials bonded to Filtek™ Z350 XT demonstrated clinically acceptable and high SBS. Urbical LC showed the highest SBS while Biodentine® showed the lowest SBS.


2009 ◽  
Vol 79 (3) ◽  
pp. 564-570 ◽  
Author(s):  
Toshiya Endo ◽  
Rieko Ozoe ◽  
Koichi Shinkai ◽  
Makiko Aoyagi ◽  
Hiroomi Kurokawa ◽  
...  

Abstract Objective: To ascertain the effects of repeated bonding on the shear bond strength of orthodontic brackets bonded with a fluoride-releasing and -recharging adhesive system with a self-etching primer in comparison with two other types of adhesive system. Materials and Methods: A total of 48 premolars were collected and divided equally into three groups of 16. Each group was assigned one of three adhesive systems: Transbond XT, Transbond Plus, or a fluoride-releasing and -recharging adhesive system, Beauty Ortho Bond. Shear bond strength was measured 24 hours after bracket bonding, with the bonding/debonding procedures repeated twice after the first debonding. A universal testing machine was used to determine shear bond strengths, and bracket/adhesive failure modes were evaluated with the adhesive remnant index after each debonding. Results: At every debonding sequence, all of these three adhesive systems had a shear bond strength of 6 MPa, which is a minimum requirement for clinical use. Transbond XT and Transbond Plus had significantly higher mean shear bond strengths than did Beauty Ortho Bond at each debonding. No significant differences in mean bond strength were observed between the three debondings in each adhesive system. Bond failure at the enamel/adhesive interface occurred more frequently in Beauty Ortho Bond than in Transbond XT or Transbond Plus. Conclusions: The fluoride-releasing and -recharging adhesive system with the self-etching primer (Beauty Ortho Bond) had clinically sufficient shear bond strength in repeated bracket bonding; this finding can help orthodontists to decrease the risk of damage to enamel at debonding.


2013 ◽  
Vol 14 (6) ◽  
pp. 1036-1038
Author(s):  
Abdul Mujeeb ◽  
Bhadra Rao ◽  
Satti Narayana Reddy ◽  
Kanchan Mehta ◽  
G Saritha

ABSTRACT Aim To determine the shear bond strength of self-etch adhesive G-bond on pre-etched enamel. Materials and methods Thirty caries free human mandibular premolars extracted for orthodontic purpose were used for the study. Occlusal surfaces of all the teeth were flattened with diamond bur and a silicon carbide paper was used for surface smoothening. The thirty samples were randomly grouped into three groups. Three different etch systems were used for the composite build up: group 1 (G-bond self-etch adhesive system), group 2 (G-bond) and group 3 (Adper single bond). Light cured was applied for 10 seconds with a LED unit for composite buildup on the occlusal surface of each tooth with 8 millimeters (mm) in diameter and 3 mm in thickness. The specimens in each group were tested in shear mode using a knife-edge testing apparatus in a universal testing machine across head speed of 1 mm/ minute. Shear bond strength values in Mpa were calculated from the peak load at failure divided by the specimen surface area. The mean shear bond strength of all the groups were calculated and statistical analysis was carried out using one-way Analysis of Variance (ANOVA). Results The mean bond strength of group 1 is 15.5 Mpa, group 2 is 19.5 Mpa and group 3 is 20.1 Mpa. Statistical analysis was carried out between the groups using one-way ANOVA. Group 1 showed statistically significant lower bond strength when compared to groups 2 and 3. No statistical significant difference between groups 2 and 3 (p < 0.05). Conclusion Self-etch adhesive G-bond showed increase in shear bond strength on pre-etched enamel. How to cite this article Rao B, Reddy SN, Mujeeb A, Mehta K, Saritha G. An Evaluation of Shear Bond Strength of Self-Etch Adhesive on Pre-etched Enamel: An In vitro Study. J Contemp Dent Pract 2013;14(6):1036-1038.


2013 ◽  
Vol 18 (2) ◽  
pp. 76-80 ◽  
Author(s):  
Aisha de Souza Gomes Stumpf ◽  
Carlos Bergmann ◽  
José Renato Prietsch ◽  
Juliane Vicenzi

OBJECTIVE: To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. METHODS: Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI). RESULTS: The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests) demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. CONCLUSIONS: The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.


2020 ◽  
Vol 14 (4) ◽  
pp. 239-243
Author(s):  
Eglal Ahmed Ghozy ◽  
Marwa Sameh Shamaa ◽  
Ahmed A. El-Bialy

Background. The present study aimed to evaluate the bond strength of metal bracket (MB) and ceramic bracket (CB) bonded to different CAD/CAM ceramic substrates etched with hydrofluoric acid (HFA) vs. phosphoric acid (PA). Methods. A total of 120 CAD/CAM ceramic blocks in 12 groups were fabricated from three different CAD/CAM ceramic materials: VITABLOCS Mark II, VITAENAMIC, and IPS e.max CAD. Each ceramic material group was divided into two etching groups: one treated with 9.5% HFA and the other treated with 37%. Sixty metal and CBs of the upper right central incisor were bonded to the HFA-treated blocks. Another 60 metal and CBs were bonded to the PA treated blocks. All the bonded specimens were thermocycled before shear bond strength (SBS) testing. Then the bond failure mode was recorded Results. There were no significant differences in SBS values between the three CAD/CAM ceramic materials. The HFA-treated specimens exhibited significantly higher SBS values than the PA-treated specimens. Also, the SBS values of CBs were significantly higher than the metal brackets (MBs). The adhesive remnant index (ARI) score was 4 for most of the groups, indicating that almost no adhesive remained on the porcelain surface. Conclusion. The CAD/CAM ceramic type did not influence SBS; however, HFA exhibited significantly higher SBS compared to PA.


2012 ◽  
Vol 23 (6) ◽  
pp. 698-702 ◽  
Author(s):  
Gabriela da Rocha Leódido ◽  
Hianna Oliveira Fernandes ◽  
Mateus Rodrigues Tonetto ◽  
Cristina Dupim Presoto ◽  
Matheus Coêlho Bandéca ◽  
...  

The aim of this in vitro study was to evaluate the shear bond strength of brackets after pre-treatment with different fluoride solutions. This study used 48 freshly extracted sound bovine incisors that were randomly assigned to 4 experimental groups (n=12). CG: (control) without treatment; NF: 4 min application of neutral fluoride; APF: application of 1.23% acidulated phosphate fluoride (APF) for 4 min; and SFV: application of 5% sodium fluoride varnish for 6 h. For each group, after surface treatment, prophylaxis of enamel and bracket bonding with Transbond XT composite resin (3M) were performed following the manufacturer's specifications. The shear bond strength was performed with a universal testing machine 24 h after fixing the brackets. The tooth surfaces were analyzed to verify the adhesive remnant index (ARI). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was statistically significant difference among the groups (p<0.0001). CG and NF groups presented significantly higher bond strength than APF and SFV. There was no significant difference between CG and NF or between APF and SFV (p>0.05). The analysis of ARI scores revealed that most failures occurred at the enamel-resin interface. It may be concluded that the pre-treatment of enamel with 1.23% APF and 5% SFV prior to fixing orthodontic brackets reduces shear bond strength values.


2007 ◽  
Vol 77 (5) ◽  
pp. 885-889 ◽  
Author(s):  
Adam Wade Ostby ◽  
Samir E. Bishara ◽  
John Laffoon ◽  
John J. Warren

Abstract Objective: To determine the influence of self-etching primer (SEP) application time on the shear bond strength of orthodontic brackets. Materials and Methods: Forty human molars were cleaned, mounted, and randomly divided into two groups. The same SEP, adhesive, and brackets were used in both groups. Twenty teeth were conditioned following the manufacturers' recommendations by rubbing the SEP on the enamel surface for 3 to 5 seconds. The remaining 20 teeth were conditioned using the same SEP, but the application time was increased to 15 seconds. The teeth were debonded within half an hour following initial bonding using a universal testing machine. After debonding, the amount of residual adhesive remaining on the tooth was determined. Student's t-test was used to compare the shear bond strength (SBS) of the two groups, and the χ2 test was used to compare the Adhesive Remnant Index (ARI) scores for the two adhesive systems. Results: The mean SBS of the brackets bonded to the teeth subjected to the SEP for 3 to 5 seconds was 8.0 ± 4.6 MPa and was not significantly different (t = −0.69, P = .494) from the SBS of the brackets bonded using a 15-second SEP application time (x̄ = 8.9 ± 3.4 MPa). The comparisons of the ARI scores between the two groups (χ2 = 2.16) indicated that bracket failure mode was not significantly different (P = .340) for both groups, and most failures were at the bracket-adhesive interface. Conclusion: The present findings indicate that increasing the SEP application from 3 to 5 seconds to 15 seconds does not result in a significant increase in SBS.


2013 ◽  
Vol 18 (3) ◽  
pp. 124-129 ◽  
Author(s):  
Murilo Gaby Neves ◽  
Gustavo Antônio Martins Brandão ◽  
Haroldo Amorim de Almeida ◽  
Ana Maria Martins Brandão ◽  
Dário Ribeiro de Azevedo

OBJECTIVE: To evaluate, in vitro, the shear bond strength of self-curing (ConciseTM - 3M and Alpha Plast - DFL) and light-curing composites (TransbondTM XT - 3M and Natural Ortho - DFL) used in orthodontics bonding, associated to Morelli metal brackets, with further analysis of adhesive remnant index (ARI) and enamel condition in scanning electron microscopy (SEM). METHODS: Forty human premolars, just extracted and stored in physiologic solution 0.9 % were used. Randomly, these samples were divided in four groups: G1 group, the brackets were bonded with ConciseTM - 3M composite; in G2 group, Alpha Plast - DFL composite was used; in G3 group, TransbondTM XT - 3M was used; in G4 group, Natural Ortho - DFL composite was used. These groups were submitted to shear strength tests in universal testing machine, at 0.5 mm per minute speed. RESULTS: Statistical difference between G3 and G4 groups was recorded, as G4 showing higher strength resistance than G3. In the other hand, there were no statistical differences between G1, G2 and G3 and G1, G2 and G4 groups. ARI analysis showed that there was no statistical difference between the groups, and low scores were recorded among then. The scanning electron microscopy (SEM) analysis revealed the debonding spots and the enamel surface integrity. CONCLUSIONS: Shear bond strength was satisfactory and similar between the composites, however Natural Ortho - DFL revealed best comparing to TransbondTM XT - 3M.


2010 ◽  
Vol 04 (04) ◽  
pp. 367-373 ◽  
Author(s):  
Sevi Burcak Cehreli ◽  
Asli Guzey ◽  
Neslihan Arhun ◽  
Alev Cetinsahin ◽  
Bahtiyar Unver

Objectives: The aim of this in vitro study is to determine (1) shear bond strength (SBS) of brackets bonded with self-etch and total-etch adhesive after ozone treatment (2) bond failure interface using a modified Adhesive Remnant Index (ARI).Methods: 52 premolars were randomly assigned into four groups (n=13) and received the following treatments: Group 1: 30 s Ozone (Biozonix, Ozonytron, Vehos Medikal, Ankara, Turkey) application + Transbond Plus Self-Etching Primer (SEP) (3M) + Transbond XT (3M), Group 2: Transbond Plus SEP + Transbond XT, Group 3: 30 s Ozone application + 37% orthophosphoric acid + Transbond XT Primer (3M) + Transbond XT, Group 4: 37% orthophosphoric acid + Transbond XT Primer + Transbond XT. All samples were stored in deionised water at 37oC for 24 hours. Shear debonding test was performed by applying a vertical force to the base of the bracket at a cross-head speed of 1 mm/min.Results: The mean SBS results were Group 1: 10.48 MPa; Group 2: 8.89 MPa; Group 3: 9.41 MPa; Group 4: 9.82 MPa. One-Way Variance Test revealed that the difference between the groups was not statistically significant (P=0.267). Debonded brackets were examined by an optical microscope at X16 magnification to determine the bond failure interface using a modified ARI. The results were (mean) Group 1: 2.38; Group 2: 1.31; Group 3: 3.00; Group 4: 1.92. Multiple comparisons showed that Groups 1 and 2, 2 and 3, 3 and 4 were statistically different (P=0.014, P<.001 and P=0.025).Conclusions: Ozone treatment prior to bracket bonding does not affect the shear bond strength. (Eur J Dent 2010;4:367-373)


Sign in / Sign up

Export Citation Format

Share Document