scholarly journals Characterization of Small Areas of Thin-Films by Grazing-Exit Electron Probe X-ray Microanalysis

2002 ◽  
Vol 43 (3) ◽  
pp. 414-416 ◽  
Author(s):  
Kouichi Tsuji ◽  
Zoya Spolnik ◽  
Kazuaki Wagatsuma ◽  
Kesami Saito ◽  
Katsuhiko Asami
Keyword(s):  
X Ray ◽  
1992 ◽  
Vol 270 ◽  
Author(s):  
Haojie Yuan ◽  
R. Stanley Williams

ABSTRACTThin films of pure germanium-carbon alloys (GexC1−x with x ≈ 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) have been grown on Si(100) and A12O3 (0001) substrates by pulsed laser ablation in a high vacuum chamber. The films were analyzed by x-ray θ-2θ diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), conductivity measurements and optical absorption spectroscopy. The analyses of these new materials showed that films of all compositions were amorphous, free of contamination and uniform in composition. By changing the film composition, the optical band gap of these semiconducting films was varied from 0.00eV to 0.85eV for x = 0.0 to 1.0 respectively. According to the AES results, the carbon atoms in the Ge-C alloy thin film samples has a bonding configuration that is a mixture of sp2 and sp3 hybridizations.


2005 ◽  
Vol 39 (6) ◽  
pp. 1409-1419 ◽  
Author(s):  
Chul-Un Ro ◽  
HeeJin Hwang ◽  
HyeKyeong Kim ◽  
Youngsin Chun ◽  
René Van Grieken

1989 ◽  
pp. 261-268 ◽  
Author(s):  
George Andermann ◽  
Francis Fujiwara ◽  
T. C. Huang ◽  
J. K. Howard ◽  
N. Staud

2013 ◽  
Vol 665 ◽  
pp. 254-262 ◽  
Author(s):  
J.R. Rathod ◽  
Haresh S. Patel ◽  
K.D. Patel ◽  
V.M. Pathak

Group II-VI compounds have been investigated largely in last two decades due to their interesting optoelectronic properties. ZnTe, a member of this family, possesses a bandgap around 2.26eV. This material is now a day investigated in thin film form due to its potential towards various viable applications. In this paper, the authors report their investigations on the preparation of ZnTe thin films using vacuum evaporation technique and their structural and optical characterizations. The structural characterization, carried out using an X-ray diffraction (XRD) technique shows that ZnTe used in present case possesses a cubic structure. Using the same data, the micro strain and dislocation density were evaluated and found to be around 1.465×10-3lines-m2and 1.639×1015lines/m2respecctively. The optical characterization carried out in UV-VIS-NIR region reveals the fact that band gap of ZnTe is around 2.2eV in present case. In addition to this, it was observed that the value of bandgap decreases as the thickness of films increases. The direct transitions of the carries are involved in ZnTe. Using the data of UV-VIS-NIR spectroscopy, the transmission coefficient and extinction coefficient were also calculated for ZnTe thin films. Besides, the variation of extinction coefficient with wavelength has also been discussed here.


1990 ◽  
Vol 37 (1) ◽  
pp. 141-144
Author(s):  
Tsunekazu Iwata ◽  
Akihiko Yamaji ◽  
Youichi Enomoto

2005 ◽  
Vol 892 ◽  
Author(s):  
Qianghua Wang ◽  
Jianzeng Xu ◽  
Changhe Huang ◽  
Gregory W Auner

AbstractThis paper reports the fabrication and characterization of micromachined ultrasonic transducers (MUT) based on piezoelectric aluminum nitride (AlN) thin films. The MUT device is composed of an Al/AlN/Al sandwiched structure overlaid on top of a silicon (Si) diaphragm. X-ray diffraction (XRD) scan shows that highly c-axis oriented AlN (002) thin films have been grown on Al/Si(100) substrates. Electrical impedance of the MUT devices is analyzed as a function of frequency. The fundamental resonant frequencies of the devices are found in the range of 65-70 kHz, which are in approximation to the theoretical calculation. The effective coupling factors of the devices are also derived as 0.18.


Sign in / Sign up

Export Citation Format

Share Document