Structural and Optical Characterization of Zinc Telluride Thin Films

2013 ◽  
Vol 665 ◽  
pp. 254-262 ◽  
Author(s):  
J.R. Rathod ◽  
Haresh S. Patel ◽  
K.D. Patel ◽  
V.M. Pathak

Group II-VI compounds have been investigated largely in last two decades due to their interesting optoelectronic properties. ZnTe, a member of this family, possesses a bandgap around 2.26eV. This material is now a day investigated in thin film form due to its potential towards various viable applications. In this paper, the authors report their investigations on the preparation of ZnTe thin films using vacuum evaporation technique and their structural and optical characterizations. The structural characterization, carried out using an X-ray diffraction (XRD) technique shows that ZnTe used in present case possesses a cubic structure. Using the same data, the micro strain and dislocation density were evaluated and found to be around 1.465×10-3lines-m2and 1.639×1015lines/m2respecctively. The optical characterization carried out in UV-VIS-NIR region reveals the fact that band gap of ZnTe is around 2.2eV in present case. In addition to this, it was observed that the value of bandgap decreases as the thickness of films increases. The direct transitions of the carries are involved in ZnTe. Using the data of UV-VIS-NIR spectroscopy, the transmission coefficient and extinction coefficient were also calculated for ZnTe thin films. Besides, the variation of extinction coefficient with wavelength has also been discussed here.

2012 ◽  
Vol 510-511 ◽  
pp. 89-97
Author(s):  
G.H. Tariq ◽  
M. Anis-ur-Rehman

To overcome the naturally existing Schottky barrier problem between p-CdTe and any metal, an intermediate semiconductor thin buffer layer is a better choice prior to the final metallization for contact. Among many investigated back contact materials the ZnTe is suitable as a buffer layer. ZnTe thin films were deposited onto glass substrates by the thermal evaporation technique under vacuum ~2×10-5mbar. Undoped ZnTe thin films are highly resistive, extrinsic doping of Cu was made to improve the electrical conductivity. Films were doped by immersing in Cu NO32.5H2O solutions for Cu doping. To optimize the growth parameters the prepared films were characterized using various techniques. The structural analysis of these films was performed by X-ray diffraction (XRD) technique and optical transmission. X-ray diffraction identified the phases present in these films and also observed that the prepared films were polycrystalline. Also the spectral dependence of absorption coefficient was determined from spectrophotometer. Energy band gap index were calculated from obtained optical measurements data.


2020 ◽  
Vol 75 (8) ◽  
pp. 781-788
Author(s):  
Brijesh Kumar Yadav ◽  
Pratima Singh ◽  
Chandreshvar Prasad Yadav ◽  
Dharmendra Kumar Pandey ◽  
Dhananjay Singh

AbstractThe present work encloses structural and optical characterization of copper (I) selenide (Cu2Se) thin films. The films having thickness 85 nm have been deposited using thermal evaporation technique in initial step of work. The structural and morphological studies of deposited thin films are then done by X-ray diffraction (XRD), scanning electron microscope (SEM), and surface profilometer measurements. Later on, ultraviolet-visible-near-infrared (UV-VIS-NIR) spectrophotometer and Raman spectroscopic measurements are performed for optical characterization of films. The structure and morphology measurements reveal that deposited material of films is crystalline. The optical band gap estimated from the optical transmission spectra of the film has been found 1.90 eV. The mean values of refractive index, extinction coefficient, real and imaginary dielectric constant are received 3.035, 0.594, 9.623, and 3.598, respectively. The obtained results are compared and analyzed for justification and application of Cu2Se thin films.


2011 ◽  
Vol 264-265 ◽  
pp. 726-731
Author(s):  
S.A. Mohamad ◽  
Wan Jeffrey Basirun ◽  
Z.A. Ibrahim ◽  
A.K. Arof ◽  
Mehdi Ebadi

Electrodeposition of ZnTe thin films by controlled potential method from aqueous solutions on ITO were done to investigate characteristics suitable as a window material in solar cells technology. The influence deposition of potential towards the Zn:Te ratio and the crystallinity are discussed. The electrodeposited films were investigated by using X-Ray Diffraction and Energy Dispersive Analysis of X-Ray. The Te content decreases at higher deposition potentials.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


1990 ◽  
Vol 37 (1) ◽  
pp. 141-144
Author(s):  
Tsunekazu Iwata ◽  
Akihiko Yamaji ◽  
Youichi Enomoto

2005 ◽  
Vol 892 ◽  
Author(s):  
Qianghua Wang ◽  
Jianzeng Xu ◽  
Changhe Huang ◽  
Gregory W Auner

AbstractThis paper reports the fabrication and characterization of micromachined ultrasonic transducers (MUT) based on piezoelectric aluminum nitride (AlN) thin films. The MUT device is composed of an Al/AlN/Al sandwiched structure overlaid on top of a silicon (Si) diaphragm. X-ray diffraction (XRD) scan shows that highly c-axis oriented AlN (002) thin films have been grown on Al/Si(100) substrates. Electrical impedance of the MUT devices is analyzed as a function of frequency. The fundamental resonant frequencies of the devices are found in the range of 65-70 kHz, which are in approximation to the theoretical calculation. The effective coupling factors of the devices are also derived as 0.18.


2019 ◽  
Vol 14 (29) ◽  
pp. 55-72
Author(s):  
Bushra A. Hasan

Alloys of InxSe1-x were prepared by quenching technique withdifferent In content (x=10, 20, 30, and 40). Thin films of these alloyswere prepared using thermal evaporation technique under vacuum of10-5 mbar on glass, at room temperature R.T with differentthicknesses (t=300, 500 and 700 nm). The X–ray diffractionmeasurement for bulk InxSe1-x showed that all alloys havepolycrystalline structures and the peaks for x=10 identical with Se,while for x=20, 30 and 40 were identical with the Se and InSestandard peaks. The diffraction patterns of InxSe1-x thin film showthat with low In content (x=10, and 20) samples have semicrystalline structure, The increase of indium content to x=30decreases degree of crystallinity and further increase of indiumcontent to x=40 leads to convert structure to amorphous. Increase ofthickness from 300 to 700nm increases degree of crystallinity for allindium content. Transmittance measurements were used to calculaterefractive index n and the extinction coefficient k using Swanepole’smethod. The optical constants such as refractive index (n), extinctioncoefficient (k) and dielectric constant (εr, εi) increases for low indiumcontent samples and decreases for high indium content samples,while increase of thickness increases optical constants for all xvalues. The oscillator energy E0, dispersion energy Ed, and otherparameters have been determined by Wemple - DiDomenico singleoscillator approach.


1988 ◽  
Vol 32 ◽  
pp. 311-321 ◽  
Author(s):  
R.A. Larsen ◽  
T.F. McNulty ◽  
R.P. Goehner ◽  
K.R. Crystal

AbstractThe use of conventional θ/2θ diffraction methods for the characterization of polycrystalline thin films is not in general a satisfactory technique due to the relatively deep penetration of x-ray photons in most materials. Glancing incidence diffraction (GID) can compensate for the penetration problems inherent in the θ/2θ geometry. Parallel beam geometry has been developed in conjunction with GID to eliminate the focusing aberrations encountered when performing these types of measurements. During the past yearwe developed a parallel beam attachment which we have successfully configured to a number of systems.


Sign in / Sign up

Export Citation Format

Share Document