scholarly journals Evidence for a Role of Transforming Growth Factor (TGF)-β1 in the Induction of Postglomerular Albuminuria in Diabetic Nephropathy

Diabetes ◽  
2007 ◽  
Vol 56 (2) ◽  
pp. 380-388 ◽  
Author(s):  
Leileata M. Russo ◽  
Elisabetta del Re ◽  
Dennis Brown ◽  
Herbert Y. Lin
2016 ◽  
Vol 310 (8) ◽  
pp. F689-F696 ◽  
Author(s):  
Albert S. Chang ◽  
Catherine K. Hathaway ◽  
Oliver Smithies ◽  
Masao Kakoki

Transforming growth factor-β1 (TGF-β1) is established to be involved in the pathogenesis of diabetic nephropathy. The diabetic milieu enhances oxidative stress and induces the expression of TGF-β1. TGF-β1 promotes cell hypertrophy and extracellular matrix accumulation in the mesangium, which decreases glomerular filtration rate and leads to chronic renal failure. Recently, TGF-β1 has been demonstrated to regulate urinary albumin excretion by both increasing glomerular permeability and decreasing reabsorption in the proximal tubules. TGF-β1 also increases urinary excretion of water, electrolytes and glucose by suppressing tubular reabsorption in both normal and diabetic conditions. Although TGF-β1 exerts hypertrophic and fibrogenic effects in diabetic nephropathy, whether suppression of the function of TGF-β1 can be an option to prevent or treat the complication is still controversial. This is partly because adrenal production of mineralocorticoids could be augmented by the suppression of TGF-β1. However, differentiating the molecular mechanisms for glomerulosclerosis from those for the suppression of the effects of mineralocorticoids by TGF-β1 may assist in developing novel therapeutic strategies for diabetic nephropathy. In this review, we discuss recent findings on the role of TGF-β1 in diabetic nephropathy.


2021 ◽  
Vol 10 (8) ◽  
pp. 474-487
Author(s):  
Mengmeng Duan ◽  
Qingxuan Wang ◽  
Yang Liu ◽  
Jing Xie

Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of cartilage defects by recruiting autologous mesenchymal stem cells and promoting secretion of other growth factor clusters. In addition, some pioneering studies have already considered it as a potential target in the treatment of OA and RA. This article aims to summarize the current progress of TGF-β2 in cartilage development and diseases, which might provide new cues for remodelling of cartilage defect and intervention of cartilage diseases.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Lai-Ming Yung ◽  
Samuel D Paskin-Flerlage ◽  
Ivana Nikolic ◽  
Scott Pearsall ◽  
Ravindra Kumar ◽  
...  

Introduction: Excessive Transforming Growth Factor-β (TGF-β) signaling has been implicated in pulmonary arterial hypertension (PAH), based on activation of TGF-β effectors and transcriptional targets in affected lungs and the ability of TGF-β type I receptor (ALK5) inhibitors to improve experimental PAH. However, clinical use of ALK5 inhibitors has been limited by cardiovascular toxicity. Hypothesis: We tested whether or not selective blockade of TGF-β and Growth Differentiation Factor (GDF) ligands using a recombinant TGFβ type II receptor extracellular domain Fc fusion protein (TGFBRII-Fc) could impact experimental PAH. Methods: Male SD rats were injected with monocrotaline (MCT) and received vehicle or TGFBRII-Fc (15 mg/kg, twice per week, i.p.). C57BL/6 mice were treated with SU-5416 and hypoxia (SUGEN-HX) and received vehicle or TGFBRII-Fc. RNA-Seq was used to profile transcriptional changes in lungs of MCT rats. Circulating levels of GDF-15 were measured in 241 PAH patients and 41 healthy controls. Human pulmonary artery smooth muscle cells were used to examine signaling in vitro . Results: TGFBRII-Fc is a selective ligand trap, inhibiting the ability of GDF-15, TGF-β1, TGF-β3, but not TGF-β2 to activate SMAD2/3 in vitro . In MCT rats, prophylactic treatment with TGFBRII-Fc normalized expression of TGF-β transcriptional target PAI-1, attenuated PAH and vascular remodeling. Delayed administration of TGFBRII-Fc in rats with established PAH at 2.5 weeks led to improved survival, decreased PAH and remodeling at 5 weeks. Similar findings were observed in SUGEN-HX mice. No valvular abnormalities were found with TGFBRII-Fc treatment. RNA-Seq revealed GDF-15 to be the most highly upregulated TGF-β ligand in the lungs of MCT rats, with only modest increases in TGF-β1 and no change in TGF-β2/3 observed, suggesting a dominant role of GDF-15 in the pathophysiology of this model. Plasma levels of GDF-15 were significantly increased in patients with diverse etiologies of WHO Group I PAH. Conclusions: These findings demonstrate that a selective TGF-β/GDF-15 trap attenuates experimental PAH, remodeling and mortality, without causing valvulopathy. These data highlight the potential role of GDF-15 as a pathogenic molecule and therapeutic target in PAH.


Author(s):  
N. N. Kaladze ◽  
E. I. Slobodyan

The purpose: to evaluate the role of collagen receptors Human Discoidin Domain Receptors (DDR1) as mediators of inflammation, proliferation and fibrosis in children with chronic pyelonephritis (CP), to reveal their relationship to the clinical form of the disease and the characteristics of its flow. Materials and methods: The levels of DDR1, transforming growth factor (TGF-β1), insulin-like growth factor (IGF-1) in the serum, β2 - microglobulin ( β2- MG) in the serum and urine were identified during the study of 40 children, ages 6 to 16 with CP in a state of clinical and laboratory remission. Results: Clinical and laboratory remission HP was associated with significant increased levels of DDR1 sera from long ill patients with frequent exacerbations, as well as 2-3 degree of activity last exacerbation, with family history. Found a strong inverse correlation between the levels of DDR1 and IGF-1, and the line with TGF-β1 and β2-MG of blood and urine. In patients with obstructive HP DDR1 level was significantly higher than in patients with non-obstructive clinical form. Conclusions: Increased serum DDR1 shows the progression of kidney damage with active fibrogenesis and inflammation in certain categories of patients with CP in a state of clinical and laboratory remission.


2002 ◽  
Vol 196 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Ciriaco A. Piccirillo ◽  
John J. Letterio ◽  
Angela M. Thornton ◽  
Rebecca S. McHugh ◽  
Mizuko Mamura ◽  
...  

CD4+CD25+ regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4+CD25−T cells and are potent suppressors of T cell activation in vitro. Their mechanism of suppression remains unknown, but most in vitro studies suggest that it is cell contact–dependent and cytokine independent. The role of TGF-β1 in CD4+CD25+ suppressor function remains unclear. While most studies have failed to reverse suppression with anti–transforming growth factor (TGF)-β1 in vitro, one recent study has reported that CD4+CD25+ T cells express cell surface TGF-β1 and that suppression can be completely abrogated by high concentrations of anti–TGF-β suggesting that cell-associated TGF-β1 was the primary effector of CD4+CD25+-mediated suppression. Here, we have reevaluated the role of TGF-β1 in CD4+CD25+-mediated suppression. Neutralization of TGF-β1 with either monoclonal antibody (mAb) or soluble TGF-βRII-Fc did not reverse in vitro suppression mediated by resting or activated CD4+CD25+ T cells. Responder T cells from Smad3−/− or dominant-negative TGF-β type RII transgenic (DNRIITg) mice, that are both unresponsive to TGF-β1–induced growth arrest, were as susceptible to CD4+CD25+-mediated suppression as T cells from wild-type mice. Furthermore, CD4+CD25+ T cells from neonatal TGF-β1−/− mice were as suppressive as CD4+CD25+ from TGF-β1+/+ mice. Collectively, these results demonstrate that CD4+CD25+ suppressor function can occur independently of TGF-β1.


2005 ◽  
Vol 11 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Noboru Yoshimoto ◽  
Shinji Togo ◽  
Toru Kubota ◽  
Nobuyuki Kamimukai ◽  
Shuji Saito ◽  
...  

2005 ◽  
Vol 54 (9) ◽  
pp. 837-847 ◽  
Author(s):  
V. S. Thakur ◽  
B. Shankar ◽  
S. Chatterjee ◽  
S. Premachandran ◽  
K. B. Sainis

2005 ◽  
Vol 11 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Noboru Yoshimoto ◽  
Shinji Togo ◽  
Toru Kubota ◽  
Nobuyuki Kamimukai ◽  
Shuji Saito ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
pp. 73-81
Author(s):  
Elfiani Elfiani ◽  
Rita Halim ◽  
M Haldian Hakir

ABSTRACT Background: Diabetic nephropathy (DN) is a complication of diabetes in the kidney that frequently causes terminal kidney disease. This kidney disease caused by diabetes is a syndrome characterized by albumin in urine (albuminuria). Growth factor-β1 (TGF- β1) is a multifunctional cytokine that controls many biological processes, including immunity, differentiation, tumor suppression, tumor metastasis, aging, migration, wound healing, apoptosis, adipogenesis, and osteogenesis. Previous studies had showed that TGF-β1 plays a role in albuminuria, where TGF-β1 expression in the kidney increases in diabetes patients. Elevation of cytokine level, especially transforming growth factor beta-1 (TGF-β1) that induces the increase of several extra cellular matrices (ECM), i.e. fibronectin, integrin-linked kinase (ILK) and type IV collagen. This TGF-β1 activity causes the accumulation of ECM, which leads to thickened glomerular basement membrane (GBM). Thickening of GBM and changes in kidney structure in the form of hypertrophy and reduced glomerular podocytes caused by apoptosis and attachment in GBM causes protein components to exit through urine (albuminuria). This study aimed to prove the correlation between transforming growth factor-β1 and albumin level in urine of diabetic nephropathy. Metode : This study a observasional with desain Cross-sectional  comparative study. Results: Mean TGF-β1 level in type 2 DM patients with diabetic nephropathy in this study was 47.30 ± 14.70 ng/ml, with similar value between men and women with 43.1 ng/ml and 44.7 ng/ml, respectively. Out of 60 type 2 DM participants with ND, the mean albuminuria level according to ACR was 722.53 ± 1854.96 mg/g. The result of male participants was lower compared to female participants, with 667.8 mg/mg and 777.2 mg/g, respectively. Conclusion: There was insignificant correlation between TGF-β1 in diabetic nephropathy (DN) and albumin level in urine measured using albumin and urine creatinine ratio (ACR) (p = 0.066). Keywords: Diabetic Nephropathy, Albuminuria, TGF-β1   ABSTRAK Latar Belakang : Nefropati diabetik (ND) merupakan komplikasi diabetes pada ginjal yang paling sering menyebabkan terjadinya penyakit ginjal terminal. Penyakit ginjal akibat diabetes ini merupakan sindroma dengan karakteristik terdapatnya albumin dalam urine (albuminuria). Faktor pertumbuhan-β1 (TGF-β1) adalah sebuah sitokin multifungsi yang mengendalikan banyak proses biologis termasuk kekebalan, diferensiasi, tumor supresi, tumor metastasis, penuaan, migrasi, penyembuhan luka, apoptosis, adipogenesis, dan osteogenesis. Sejumlah penelitian sebelumnya menunjukkan bahwa TGF-β1 berperan terhadap terjadinya albuminuria, dimana pasien diabetes didapatkan ekspresi TGF-β1 di ginjal meningkat. Peningkatan kadar cytokine terutama Transforming Growth Factor Beta-1 (TGF-β1) yang menginduksi peningkatan beberapa Extra Cellular Matrix (ECM) antara lain fibronectin, integrin-linked kinase (ILK) dan collagen tipe-IV. Aktifitas TGF-β1 ini menyebabkan akumulasi ECM sehingga terjadi penebalan Glomerular Basement Membrane (GBM). Penebalan dari GBM dan terjadinya perubahan struktur ginjal berupa hipertrofi dan berkurangnya sel-sel podocyte glomerulus akibat kerusakan (apoptosis) dan perlengketan di GBM menyebabkan komponen protein keluar melalui urin (albuminuria). Tujuan penelitian ini untuk membuktikan hubungan antara kadar transforming growth  factor-β1 dengan kadar albumin dalam urin pada Nefropati Diabetik. Metode : Penelitian ini merupakan penelitian Observasional dengan desain Cross-sectional   comparative study. Hasil : Kadar rata-rata TGF-β1 pasien DM tipe-2 dengan Nefropati Diabetik pada penelitian ini adalah 47,30 ± 14,70 ng/ml, tidak jauh berbeda antara laki-laki yaitu 43,1 ng/ml dengan perempuan 44,7 ng/ml. Dari 60 orang responden DM tipe-2 dengan ND pada penelitian ini didapatkan kadar albuminuria rata-rata berdasarkan ACR adalah 722,53 ± 1854,96 mg/g. Responden laki-laki lebih rendah dibanding perempuan yaitu 667,8 mg/g berbanding 777,2 mg/g. Kesimpulan : Tidak terdapat hubungan yang bermakna antara TGF-β1 pada Nefropati Diabetik (ND) dengan kadar albumin dalam urin yang dihitung berdasarkan rasio albumin dan creatinin urin (ACR) (p=0,066). Kata Kunci : Nefropati Diabetik, Albuminuria, TGF-β1


Sign in / Sign up

Export Citation Format

Share Document