scholarly journals CD4+CD25+ Regulatory T Cells Can Mediate Suppressor Function in the Absence of Transforming Growth Factor β1 Production and Responsiveness

2002 ◽  
Vol 196 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Ciriaco A. Piccirillo ◽  
John J. Letterio ◽  
Angela M. Thornton ◽  
Rebecca S. McHugh ◽  
Mizuko Mamura ◽  
...  

CD4+CD25+ regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4+CD25−T cells and are potent suppressors of T cell activation in vitro. Their mechanism of suppression remains unknown, but most in vitro studies suggest that it is cell contact–dependent and cytokine independent. The role of TGF-β1 in CD4+CD25+ suppressor function remains unclear. While most studies have failed to reverse suppression with anti–transforming growth factor (TGF)-β1 in vitro, one recent study has reported that CD4+CD25+ T cells express cell surface TGF-β1 and that suppression can be completely abrogated by high concentrations of anti–TGF-β suggesting that cell-associated TGF-β1 was the primary effector of CD4+CD25+-mediated suppression. Here, we have reevaluated the role of TGF-β1 in CD4+CD25+-mediated suppression. Neutralization of TGF-β1 with either monoclonal antibody (mAb) or soluble TGF-βRII-Fc did not reverse in vitro suppression mediated by resting or activated CD4+CD25+ T cells. Responder T cells from Smad3−/− or dominant-negative TGF-β type RII transgenic (DNRIITg) mice, that are both unresponsive to TGF-β1–induced growth arrest, were as susceptible to CD4+CD25+-mediated suppression as T cells from wild-type mice. Furthermore, CD4+CD25+ T cells from neonatal TGF-β1−/− mice were as suppressive as CD4+CD25+ from TGF-β1+/+ mice. Collectively, these results demonstrate that CD4+CD25+ suppressor function can occur independently of TGF-β1.

2003 ◽  
Vol 198 (8) ◽  
pp. 1179-1188 ◽  
Author(s):  
Atsushi Kitani ◽  
Ivan Fuss ◽  
Kazuhiko Nakamura ◽  
Fumiyuki Kumaki ◽  
Takashi Usui ◽  
...  

Interleukin (IL)-10 and transforming growth factor (TGF)-β1 are suppressor cytokines that frequently occur together during a regulatory T cell response. Here we used a one gene doxycycline (Dox)-inducible plasmid encoding TGF-β1 to analyze this association and test its utility. In initial studies, we showed that intranasal administration of this plasmid (along with Dox) led to the appearance of TGF-β1–producing cells (in spleen and lamina propria) and the almost concomitant appearance of IL-10–producing cells. Moreover, we showed that these cells exert Dox-regulated suppression of the T helper cell (Th)1-mediated inflammation in trinitrobenzene sulfonic acid colitis. In subsequent in vitro studies using retroviral TGF-β1 expression, we established that IL-10 production by Th1 cells occurs after exposure to TGF-β1 from either an endogenous or exogenous source. In addition, using a self-inactivating retrovirus luciferase reporter construct we showed that TGF-β1 induces Smad4, which then binds to and activates the IL-10 promoter. Furthermore, intranasal TGF-β1 plasmid administration ameliorates bleomycin-induced fibrosis in wild-type but not IL-10–deficient mice, strongly suggesting that the amelioration is IL-10 dependent and that IL-10 protects mice from TGF-β1–mediated fibrosis. Taken together, these findings suggest that the induction of IL-10 by TGF-β1 is not fortuitous, but instead fulfills important requirements of TGF-β1 function after its secretion by regulatory T cells.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Lai-Ming Yung ◽  
Samuel D Paskin-Flerlage ◽  
Ivana Nikolic ◽  
Scott Pearsall ◽  
Ravindra Kumar ◽  
...  

Introduction: Excessive Transforming Growth Factor-β (TGF-β) signaling has been implicated in pulmonary arterial hypertension (PAH), based on activation of TGF-β effectors and transcriptional targets in affected lungs and the ability of TGF-β type I receptor (ALK5) inhibitors to improve experimental PAH. However, clinical use of ALK5 inhibitors has been limited by cardiovascular toxicity. Hypothesis: We tested whether or not selective blockade of TGF-β and Growth Differentiation Factor (GDF) ligands using a recombinant TGFβ type II receptor extracellular domain Fc fusion protein (TGFBRII-Fc) could impact experimental PAH. Methods: Male SD rats were injected with monocrotaline (MCT) and received vehicle or TGFBRII-Fc (15 mg/kg, twice per week, i.p.). C57BL/6 mice were treated with SU-5416 and hypoxia (SUGEN-HX) and received vehicle or TGFBRII-Fc. RNA-Seq was used to profile transcriptional changes in lungs of MCT rats. Circulating levels of GDF-15 were measured in 241 PAH patients and 41 healthy controls. Human pulmonary artery smooth muscle cells were used to examine signaling in vitro . Results: TGFBRII-Fc is a selective ligand trap, inhibiting the ability of GDF-15, TGF-β1, TGF-β3, but not TGF-β2 to activate SMAD2/3 in vitro . In MCT rats, prophylactic treatment with TGFBRII-Fc normalized expression of TGF-β transcriptional target PAI-1, attenuated PAH and vascular remodeling. Delayed administration of TGFBRII-Fc in rats with established PAH at 2.5 weeks led to improved survival, decreased PAH and remodeling at 5 weeks. Similar findings were observed in SUGEN-HX mice. No valvular abnormalities were found with TGFBRII-Fc treatment. RNA-Seq revealed GDF-15 to be the most highly upregulated TGF-β ligand in the lungs of MCT rats, with only modest increases in TGF-β1 and no change in TGF-β2/3 observed, suggesting a dominant role of GDF-15 in the pathophysiology of this model. Plasma levels of GDF-15 were significantly increased in patients with diverse etiologies of WHO Group I PAH. Conclusions: These findings demonstrate that a selective TGF-β/GDF-15 trap attenuates experimental PAH, remodeling and mortality, without causing valvulopathy. These data highlight the potential role of GDF-15 as a pathogenic molecule and therapeutic target in PAH.


2010 ◽  
Vol 88 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Ting-Yu Wang ◽  
Jun Li ◽  
Chang-Yu Li ◽  
Yong Jin ◽  
Xiong-Wen Lü ◽  
...  

This study was to investigate the effect of leflunomide on the immunosuppressive CD4+CD25+ regulatory T cells (CD4+CD25+ Tregs) in collagen-induced arthritis (CIA) rats. CIA was induced by collagen type II in Wistar rats. Immunofluorescence flow cytometry and RT-PCR were used to determine the proportion of CD4+CD25+ Tregs and the expression of Foxp3 mRNA, respectively. Proliferation of T lymphocytes was assayed with MTT reagent, and the level of transforming growth factor β1 (TGF-β1) in the supernatant of concanavalin A (Con A)-induced T lymphocytes was determined by ELISA kit. Our investigations demonstrated that inhibition of arthritis by leflunomide was related to changes in CD4+CD25+ Tregs. In addition, A771726, which is the active metabolite of leflunomide, promoted the differentiation of spleen lymphocytes into CD4+CD25+ Tregs, increased antiinflammatory cytokine TGF-β1 secretion, and adjusted the activity of Con A-induced lymphocytes in vitro.


2018 ◽  
Vol 26 (8) ◽  
pp. 1034-1044 ◽  
Author(s):  
Marina Nikolaeva ◽  
Alina Babayan ◽  
Elena Stepanova ◽  
Alla Arefieva ◽  
Tatiana Dontsova ◽  
...  

Seminal plasma (SP) is thought to be a crucial factor which affects the expansion of regulatory T cells (Tregs) in female reproductive tract during embryo implantation. We propose that seminal transforming growth factor (TGF) β1 is responsible for local accumulation of circulating Tregs, which manifests as changes in Treg frequency in peripheral blood, whereas seminal interleukin (IL) 18 interferes with TGF-β1-dependent cellular reactions. The purpose of the present study is to determine whether the frequency of circulating Tregs is associated with the levels of seminal cytokines and pregnancy establishment in women exposed to partner’s SP during in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycle. Twenty-nine women were exposed to SP via timed intercourse before the day of ovum pickup (day-OPU) and also subjected to intravaginal SP application just after OPU. Measurements of seminal TGF-β1 and IL-18 were made by FlowCytomix technology. The percentage of CD4+CD25+CD127low+/ – Tregs among total circulating CD4+ T cells was determined by flow cytometry and the difference between Treg values on the day of embryo transfer and day-OPU was calculated. The percentage of Tregs on the day-OPU, identified as a predictive factor of clinical pregnancy after IVF/ICSI, showed a positive correlation with IL-18 concentration and content of this cytokine per ejaculate ( P < .001 and P < .004, respectively) and negative correlation with the TGF-β1/IL-18 ratio ( P < .014).These findings indicate that the adverse effect of seminal IL-18 excess on implantation may be realized by the prevention of postcoital TGF-β1-related migration of circulating Tregs, which clearly manifests as elevated level of Treg frequency in peripheral blood.


2020 ◽  
Vol 7 ◽  
Author(s):  
Yamato Sajiki ◽  
Satoru Konnai ◽  
Shinya Goto ◽  
Tomohiro Okagawa ◽  
Kosuke Ohira ◽  
...  

Regulatory T cells (Tregs) regulate immune responses and maintain host immune homeostasis. Tregs contribute to the disease progression of several chronic infections by oversuppressing immune responses via the secretion of immunosuppressive cytokines, such as transforming growth factor (TGF)-β and interleukin-10. In the present study, we examined the association of Tregs with Mycoplasma bovis infection, in which immunosuppression is frequently observed. Compared with uninfected cattle, the percentage of Tregs, CD4+CD25highFoxp3+ T cells, was increased in M. bovis-infected cattle. Additionally, the plasma of M. bovis-infected cattle contained the high concentrations of TGF-β1, and M. bovis infection induced TGF-β1 production from bovine immune cells in in vitro cultures. Finally, we analyzed the immunosuppressive effects of TGF-β1 on bovine immune cells. Treatment with TGF-β1 significantly decreased the expression of CD69, an activation marker, in T cells, and Th1 cytokine production in vitro. These results suggest that the increase in Tregs and TGF-β1 secretion could be one of the immunosuppressive mechanisms and that lead to increased susceptibility to other infections in terms of exacerbation of disease during M. bovis infection.


2015 ◽  
Vol 308 (5) ◽  
pp. C362-C371 ◽  
Author(s):  
Konstantinos A. Papadakis ◽  
James Krempski ◽  
Jesse Reiter ◽  
Phyllis Svingen ◽  
Yuning Xiong ◽  
...  

KLF10 has recently elicited significant attention as a transcriptional regulator of transforming growth factor-β1 (TGF-β1) signaling in CD4+ T cells. In the current study, we demonstrate a novel role for KLF10 in the regulation of TGF-β receptor II (TGF-βRII) expression with functional relevance in antiviral immune response. Specifically, we show that KLF10-deficient mice have an increased number of effector/memory CD8+ T cells, display higher levels of the T helper type 1 cell-associated transcription factor T-bet, and produce more IFN-γ following in vitro stimulation. In addition, KLF10−/− CD8+ T cells show enhanced proliferation in vitro and homeostatic proliferation in vivo. Freshly isolated CD8+ T cells from the spleen of adult mice express lower levels of surface TGF-βRII (TβRII). Congruently, in vitro activation of KLF10-deficient CD8+ T cells upregulate TGF-βRII to a lesser extent compared with wild-type (WT) CD8+ T cells, which results in attenuated Smad2 phosphorylation following TGF-β1 stimulation compared with WT CD8+ T cells. Moreover, we demonstrate that KLF10 directly binds to the TGF-βRII promoter in T cells, leading to enhanced gene expression. In vivo viral infection with Daniel's strain Theiler's murine encephalomyelitis virus (TMEV) also led to lower expression of TGF-βRII among viral-specific KLF10−/− CD8+ T cells and a higher percentage of IFN-γ-producing CD8+ T cells in the spleen. Collectively, our data reveal a critical role for KLF10 in the transcriptional activation of TGF-βRII in CD8+ T cells. Thus, KLF10 regulation of TGF-βRII in this cell subset may likely play a critical role in viral and tumor immune responses for which the integrity of the TGF-β1/TGF-βRII signaling pathway is crucial.


2001 ◽  
Vol 194 (5) ◽  
pp. 629-644 ◽  
Author(s):  
Kazuhiko Nakamura ◽  
Atsushi Kitani ◽  
Warren Strober

CD4+CD25+ T cells have been identified as a population of immunoregulatory T cells, which mediate suppression of CD4+CD25− T cells by cell–cell contact and not secretion of suppressor cytokines. In this study, we demonstrated that CD4+CD25+ T cells do produce high levels of transforming growth factor (TGF)-β1 and interleukin (IL)-10 compared with CD4+CD25− T cells when stimulated by plate-bound anti-CD3 and soluble anti-CD28 and/or IL-2, and secretion of TGF-β1 (but not other cytokines), is further enhanced by costimulation via cytotoxic T lymphocyte–associated antigen (CTLA)-4. As in prior studies, we found that CD4+CD25+ T cells suppress proliferation of CD4+CD25− T cells; however, we observed here that such suppression is abolished by the presence of anti–TGF-β. In addition, we found that CD4+CD25+ T cells suppress B cell immunoglobulin production and that anti–TGF-β again abolishes such suppression. Finally, we found that stimulated CD4+CD25+ T cells but not CD4+CD25− T cells express high and persistent levels of TGF-β1 on the cell surface. This, plus the fact that we could find no evidence that a soluble factor mediates suppression, strongly suggests that CD4+CD25+ T cells exert immunosuppression by a cell–cell interaction involving cell surface TGF-β1.


Sign in / Sign up

Export Citation Format

Share Document