scholarly journals Diabetic Downregulation of Nrf2 Activity via ERK Contributes to Oxidative Stress-Induced Insulin Resistance in Cardiac Cells In Vitro and In Vivo

Diabetes ◽  
2011 ◽  
Vol 60 (2) ◽  
pp. 625-633 ◽  
Author(s):  
Y. Tan ◽  
T. Ichikawa ◽  
J. Li ◽  
Q. Si ◽  
H. Yang ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ting Zhai ◽  
Wei Xu ◽  
Yayun Liu ◽  
Kun Qian ◽  
Yanling Xiong ◽  
...  

Background. Honokiol (HNK) has been reported to possess various beneficial effects in the context of metabolic disorders, including fatty liver, insulin resistance, and oxidative stress which are closely related to nonalcoholic steatohepatitis (NASH), however with no particular reference to CFLAR or JNK. Methods. C57BL/6 mice were fed methionine-choline-deficient (MCD) diet and administered simultaneously with HNK (10 and 20 mg/kg once a day, ig) for 6 weeks, and NCTC1469 cells were pretreated, respectively, by oleic acid (OA, 0.5 mmol/L) plus palmitic acid (PA, 0.25 mmol/L) for 24 h, and adenovirus-down Cflar for 24 h, then exposed to HNK (10 and 20 μmol/L) for 24 h. Commercial kits, H&E, MT, ORO staining, RT-qPCR, and Western blotting were used to detect the biomarkers, hepatic histological changes, and the expression of key genes involved in NASH. Results. The in vivo results showed that HNK suppressed the phosphorylation of JNK (pJNK) by activating CFLAR; enhanced the mRNA expression of lipid metabolism-related genes Acox, Cpt1α, Fabp5, Gpat, Mttp, Pparα, and Scd-1; and decreased the levels of hepatic TG, TC, and MDA, as well as the levels of serum ALT and AST. Additionally, HNK enhanced the protein expression of oxidative stress-related key regulatory gene NRF2 and the activities of antioxidases HO-1, CAT, and GSH-Px and decreased the protein levels of prooxidases CYP4A and CYP2E1. The in vivo effects of HNK on the expression of CLFAR, pJNK, and NRF2 were proved by the in vitro experiments. Moreover, HNK promoted the phosphorylation of IRS1 (pIRS1) in both tested cells and increased the uptake of fluorescent glucose 2-NBDG in OA- and PA-pretreated cells. Conclusions. HNK ameliorated NASH mainly by activating the CFLAR-JNK pathway, which not only alleviated fat deposition by promoting the efflux and β-oxidation of fatty acids in the liver but also attenuated hepatic oxidative damage and insulin resistance by upregulating the expression of NRF2 and pIRS1.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Liu Yang ◽  
Yang Yu ◽  
Baron Arnone ◽  
Chan Boriboun ◽  
Jiawei Shi ◽  
...  

Background: Long non-coding RNAs (lncRNAs) are an emerging class of RNAs with no or limited protein-coding capacity; a few of which have recently been shown to regulate critical biological processes. Myocardial infarction-associated transcript (MIAT) is a conserved mammalian lncRNA, and single nucleotide polymorphisms (SNPs) in 6 loci of this gene have been identified to be strongly associated with the incidence and severity of human myocardial infarction (MI). However, whether and how MIAT impacts on the pathogenesis of MI is unknown. Methods & Results: Quantitative RT-PCR analyses revealed that MIAT is expressed in neonatal mouse heart and to a lesser extent in adult heart. After surgical induction of MI in adult mice, MIAT starts to increase in 2 hours, peaks at 6 hours in atria and 12 hours in ventricles, and decreases to baseline at 24 hours. Fluorescent in situ hybridization (FISH) revealed a slight increase in the number of MIAT-expressing cells in the infarct border zone at 12 hours post-MI. Moreover, qRT-PCR analyses of isolated cardiac cells revealed that MIAT is predominantly expressed in cardiosphere-derived cardiac progenitor cells (CPCs). Treatment of CPCs with H 2 O 2 led to a marked upregulation of MIAT, while knockdown (KD) of MIAT resulted in a significantly impaired cell survival in vitro with H 2 O 2 treatment and in vivo after administered in the ischemic/reperfused heart. Notably, bioinformatics prediction and RNA immunoprecipitation identified FUS (fused in sarcoma) as a novel MIAT-interacting protein. FUS-KD CPCs displayed reduced cell viability and increased apoptosis under oxidative stress. Furthermore, MIAT overexpression enhanced survival of WT CPCs but not FUS-KD CPCs, suggesting that the protective role of MIAT is mediated by FUS. Conclusions: MIAT interacts with FUS to protect CPCs from oxidative stress-induced cell death.


Biochimie ◽  
2012 ◽  
Vol 94 (8) ◽  
pp. 1705-1717 ◽  
Author(s):  
Xin Wang ◽  
Chunshan Gu ◽  
Wei He ◽  
Xiaolong Ye ◽  
Hongli Chen ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Cao-Sang Truong ◽  
Eunhui Seo ◽  
Hee-Sook Jun

Accumulation of advanced glycation end products (AGEs) in the body has been implicated in the pathogenesis of metabolic conditions, such as diabetes mellitus. Methylglyoxal (MGO), a major precursor of AGEs, has been reported to induce insulin resistance in both in vitro and in vivo studies. Psoralea corylifolia seeds (PCS) have been used as a traditional medicine for several diseases, but their potential application in treating insulin resistance has not yet been evaluated. This study is aimed at investigating whether PCS extract could attenuate insulin resistance induced by MGO. Male C57BL/6N mice (6 weeks old) were administered 1% MGO in their drinking water for 18 weeks, and the PCS extract (200 or 500 mg/kg) was orally administered daily from the first day of the MGO administration. We observed that both 200 and 500 mg/kg PCS extract treatment significantly improved glucose tolerance and insulin sensitivity and markedly restored p-Akt and p-IRS1/2 expression in the livers of the MGO-administered mice. Additionally, the PCS extract significantly increased the phosphorylation of Akt and IRS-1/2 and glucose uptake in MGO-treated HepG2 cells. Further studies showed that the PCS extract inhibited MGO-induced AGE formation in the HepG2 cells and in the sera of MGO-administered mice. PCS extract also increased the expression of glyoxalase 1 (GLO1) in the liver tissue of MGO-administered mice. The PCS extract significantly decreased the phosphorylation of ERK, p38, and NF-κB and suppressed the mRNA expression of proinflammatory molecules including TNF-α and IL-1β and iNOS in MGO-administered mice. Additionally, we demonstrated that the PCS extract attenuated oxidative stress, as evidenced by the reduced ROS production in the MGO-treated cells and the enhanced expression of antioxidant enzymes in the liver of MGO-administered mice. Thus, PCS extract ameliorated the MGO-induced insulin resistance in HepG2 cells and in mice by reducing oxidative stress via the inhibition of AGE formation. These findings suggest the potential of PCS extract as a candidate for the prevention and treatment of insulin resistance.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1339
Author(s):  
Ching-Chi Chang ◽  
Hsin-Hua Li ◽  
Sing-Hua Tsou ◽  
Hui-Chih Hung ◽  
Guang-Yaw Liu ◽  
...  

Amyloid β (Aβ) is a peptide fragment of the amyloid precursor protein that triggers the progression of Alzheimer’s Disease (AD). It is believed that Aβ contributes to neurodegeneration in several ways, including mitochondria dysfunction, oxidative stress and brain insulin resistance. Therefore, protecting neurons from Aβ-induced neurotoxicity is an effective strategy for attenuating AD pathogenesis. Recently, applications of stem cell-based therapies have demonstrated the ability to reduce the progression and outcome of neurodegenerative diseases. Particularly, Nanog is recognized as a stem cell-related pluripotency factor that enhances self-renewing capacities and helps reduce the senescent phenotypes of aged neuronal cells. However, whether the upregulation of Nanog can be an effective approach to alleviate Aβ-induced neurotoxicity and senescence is not yet understood. In the present study, we transiently overexpressed Nanog—both in vitro and in vivo—and investigated the protective effects and underlying mechanisms against Aβ. We found that overexpression of Nanog is responsible for attenuating Aβ-triggered neuronal insulin resistance, which restores cell survival through reducing intracellular mitochondrial superoxide accumulation and cellular senescence. In addition, upregulation of Nanog expression appears to increase secretion of neurotrophic factors through activation of the Nrf2 antioxidant defense pathway. Furthermore, improvement of memory and learning were also observed in rat model of Aβ neurotoxicity mediated by upregulation of Nanog in the brain. Taken together, our study suggests a potential role for Nanog in attenuating the neurotoxic effects of Aβ, which in turn, suggests that strategies to enhance Nanog expression may be used as a novel intervention for reducing Aβ neurotoxicity in the AD brain.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Monica Lamberti ◽  
Giancarlo Giovane ◽  
Elpidio M. Garzillo ◽  
Franca Avino ◽  
Antonia Feola ◽  
...  

Cardiotoxicity is an important side effect of cytotoxic drugs and may be a risk factor of long-term morbidity for both patients during therapy and also for staff exposed during the phases of manipulation of antiblastic drugs. The mechanism of cardiotoxicity studied in vitro and in vivo essentially concerns the formation of free radicals leading to oxidative stress, with apoptosis of cardiac cells or immunologic reactions, but other mechanisms may play a role in antiblastic-induced cardiotoxicity. Actually, some new cytotoxic drugs like trastuzumab and cyclopentenyl cytosine show cardiotoxic effects. In this report we discuss the different mechanisms of cardiotoxicity induced by antiblastic drugs assessed using animal models.


2009 ◽  
pp. 499-509
Author(s):  
A Oudot ◽  
D Behr-Roussel ◽  
S Compagnie ◽  
S Caisey ◽  
O Le Coz ◽  
...  

Because insulin resistance is inevitably associated with cardiovascular complications, there is a need to further investigate the potential involvement of oxidative stress and the cyclo-oxygenase (COX) pathway in the vascular modifications associated to this pathological context. Endothelial function was evaluated in control and fructose-fed rats (FFR) by i) in vitro study of endothelium-dependent and -independent relaxations of aortic rings, and ii) in vivo telemetric evaluation of pressor response to norepinephrine. After 9 weeks of diet, FFR displayed hypertriglyceridemia, hyperinsulinemia and exaggerated response to glucose overload. Aortic rings from control rats and FFR exhibited comparable endothelium-dependent relaxations to Ach. In the presence of indomethacin, relaxations were significantly reduced. FFR showed exaggerated pressor responses to norepinephrine that were abolished with indomethacin. Urinary nitrites/nitrates, 8-isoprostanes and thromboxane B2 excretion levels were markedly enhanced in FFR, whereas the plasma levels of 6-keto prostaglandin F1α were unchanged. In conclusion, fructose overload in rats induced hypertriglyceridemia and insulin resistance associated with an enhanced oxidative stress. This was associated with COX pathway dysregulation which could be one of the contributors to subsequent vascular dysfunction. Consequently, reduction of oxidative stress and regulation of the COX pathway could represent new potential therapeutic strategies to limit vascular dysfunction and subsequent cardiovascular complications associated with insulin resistance.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 80
Author(s):  
Simona Terzo ◽  
Alessandro Attanzio ◽  
Pasquale Calvi ◽  
Flavia Mulè ◽  
Luisa Tesoriere ◽  
...  

Obesity-related dysmetabolic conditions are amongst the most common causes of death globally. Indicaxanthin, a bioavailable betalain pigment from Opuntia ficus-indica fruit, has been demonstrated to modulate redox-dependent signalling pathways, exerting significant anti-oxidative and anti-inflammatory effects in vitro and in vivo. In light of the strict interconnections between inflammation, oxidative stress and insulin resistance (IR), a nutritionally relevant dose of indicaxanthin has been evaluated in a high-fat diet (HFD) model of obesity-related IR. To this end, biochemical and histological analysis, oxidative stress and inflammation evaluations in liver and adipose tissue were carried out. Our results showed that indicaxanthin treatment significantly reduced body weight, daily food intake and visceral fat mass. Moreover, indicaxanthin administration induced remarkable, beneficial effects on HFD-induced glucose dysmetabolism, reducing fasting glycaemia and insulinaemia, improving glucose and insulin tolerance and restoring the HOMA index to physiological values. These effects were associated with a reduction in hepatic and adipose tissue oxidative stress and inflammation. A decrease in RONS, malondialdehyde and NO levels, in TNF-α, CCL-2 and F4-80 gene expression, in p65, p-JNK, COX-2 and i-NOS protein levels, in crown-like structures and hepatic inflammatory foci was, indeed, observed. The current findings encourage further clinical studies to confirm the effectiveness of indicaxanthin to prevent and treat obesity-related dysmetabolic conditions.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2688
Author(s):  
Yu-Chi Cheng ◽  
Yu-Min Chiu ◽  
Zen-Kong Dai ◽  
Bin-Nan Wu

Loganin is an iridoid glycoside with antioxidant, anti-inflammatory, glucose-lowering activities which may address the pathological mechanisms of painful diabetic neuropathy (PDN) related to inflammation, oxidative stress, and hyperglycemia. This study investigated the underlying mechanisms of action of loganin on PDN. The in vivo model of PDN was established by streptozotocin-nicotinamide (STZ-NA) induction in Sprague Dawley (SD) rats. Subsequently, loganin (5 mg/kg) was administered by daily intraperitoneal injection. High-glucose stimulated human SH-SY5Y cells co-incubated with loganin were used to mimic the in vitro model of PDN. Loganin improved PDN rats' associated pain behaviors (allodynia and hyperalgesia), insulin resistance index (HOMA-IR), and serum levels of superoxide dismutase (SOD), catalase and glutathione. Loganin also reduced pain-associated channel protein CaV3.2 and calcitonin gene-related peptide (CGRP) in the surficial spinal dorsal horn of PDN rats. Loganin inhibited oxidative stress and NF-κB activation and decreased the levels of mRNA and protein of proinflammatory factors IL-1β and TNF-α. Moreover, loganin attenuated insulin resistance by modulating the JNK-IRS-1 (insulin receptor substrate-1)-Akt-GSK3β signaling pathway in PDN rats. These results suggested that loganin improved PDN-mediated pain behaviors by inhibiting oxidative stress-provoked inflammation in the spinal cord, resulting in improved neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document