470-P: SIK2 Protects against Renal Tubular Injury by Inhibiting Endoplasmic Reticulum Stress

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 470-P
Author(s):  
XIAOYU LIAO ◽  
BINGYAO LIU ◽  
HONGTING ZHENG
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiarui Han ◽  
Xinxin Pang ◽  
Xiujie Shi ◽  
Yage Zhang ◽  
Zining Peng ◽  
...  

The study is aimed at investigating the effects of Ginkgo biloba extract EGB761 on renal tubular damage and endoplasmic reticulum stress (ERS) in diabetic kidney disease (DKD). A total of 50 C57BL/6 N mice were randomly divided into the normal group, DKD group, DKD+EGB761 group (36 mg/kg), and DKD+4-phenylbutyrate (4-PBA) group (1 g/kg). The DKD model was replicated by high-fat diet combined with intraperitoneal injection of streptozotocin (STZ). Renal tubular epithelial cells (HK-2) were divided into the control group, high-glucose group (30 mmol/L), EGB761 group (40 mg/L, 20 mg/L, 10 mg/L), TM group, and TM+4-PBA group. After 8 weeks of administration, expressions of serum creatinine (Scr), blood urea nitrogen (BUN), 24 h urinary protein (24 h Pro), fasting blood glucose (FBG), β2-microglobulin (β2-MG), and retinol binding protein 4 (RBP4) of mice were tested. The pathological changes of renal tissue were observed. The expressions of extracellular matrix (ECM) accumulation and epithelial-mesenchymal transition (EMT) markers α-smooth muscle actin (α-SMA), E-cadherin, fibronectin, and collagen IV, as well as the ERS markers GRP78 and ATF6, were tested by Western blot, qPCR, immunohistochemistry, or immunofluorescence. EGB761 could decrease the Scr, BUN, 24 h Pro, and FBG levels in the DKD group, alleviate renal pathological injury, decrease urine β2-MG, RBP4 levels, and decrease the expression of α-SMA, collagen IV, fibronectin, and GRP78, as well as ATF6, while increase the expression of E-cadherin. These findings demonstrate that EGB761 can improve renal function, reduce tubular injury, and ameliorate ECM accumulation and EMT in DKD kidney tubules, and the mechanism may be related to the inhibition of ERS.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoyi Mai ◽  
Xin Yin ◽  
Peipei Chen ◽  
Minzhou Zhang

Background/Aims: Obesity-related kidney disease is associated with elevated levels of saturated free fatty acids (SFA). SFA lipotoxicity in tubular cells contributes to significant cellular apoptosis and injury. Salvianolic acid B (SalB) is the most abundant bioactive molecule from Radix Salviae Miltiorrhizae. In this study, we investigated the effect of SalB on SFA-induced renal tubular injury and endoplasmic reticulum (ER) stress, in vivo and in vitro.Methods: C57BL/6 mice were assigned to five groups: a control group with normal diet (Nor), high-fat diet group (HFD), and HFD with three different SalB treatment doses, low (SalBL; 3 mg/kg), medium (SalBM; 6.25 mg/kg), and high (SalBH; 12.5 mg/kg) doses. SalB was intraperitoneally injected daily for 4 weeks after 8 weeks of HFD. After 12 weeks, mice were sacrificed and kidneys and sera were collected. Apoptosis and ER stress were induced in human proximal tubule epitelial (HK2) cells by palmitic acid (PA, 0.6 mM), tunicamycin (TM, 1 μg/ml), or thapsigargin (TG, 200 nM) in vitro.Results: C57BL/6 mice fed a high-fat diet (HFD) for 12 weeks exhibited increased apoptosis (Bax and cleaved caspase-3) and ER stress (BIP, P-eIF2α, ATF4, CHOP, ATF6, IRE1α, and XBP1s) markers expression in the kidney, compared with control mice, which were remarkably suppressed by SalB treatment. In vitro studies showed that PA (0.6 mM) induced apoptosis and ER stress in cultured HK2 cells. SalB treatment attenuated all the adverse effects of PA. However, SalB failed to inhibit TM or TG-induced ER stress in HK2 cells.Conclusion: The study indicated that SalB may play an important role in obesity-related kidney injury via mediating SFA-induced ER stress.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252761
Author(s):  
Shaoqiang Wang ◽  
Pengfei Yi ◽  
Na Wang ◽  
Min Song ◽  
Wenhui Li ◽  
...  

Long non-coding RNAs (lncRNAs) are important regulators in diabetic nephropathy. In this study, we investigated the potential role of lncRNA TUG1 in regulating endoplasmic reticulum stress (ERS)-mediated apoptosis in high glucose induced renal tubular epithelial cells. Human renal tubular epithelial cell line HK-2 was challenged with high glucose following transfection with lncRNA TUG1, miR-29c-3p mimics or inhibitor expression plasmid, either alone or in combination, for different experimental purposes. Potential binding effects between TUG1 and miR-29c-3p, as well as between miR-29c-3p and SIRT1 were verified. High glucose induced apoptosis and ERS in HK-2 cells, and significantly decreased TUG1 expression. Overexpressed TUG1 could prevent high glucose-induced apoptosis and alleviated ERS via negatively regulating miR-29c-3p. In contrast, miR-29c-3p increased HK-2 cells apoptosis and ERS upon high glucose-challenge. SIRT1 was a direct target gene of miR-29c-3p in HK-2 cells, which participated in the effects of miR-29c-3p on HK-2 cells. Mechanistically, TUG1 suppressed the expression of miR-29c-3p, thus counteracting its function in downregulating the level of SIRT1. TUG1 regulates miR-29c-3p/SIRT1 and subsequent ERS to relieve high glucose induced renal epithelial cells injury, and suggests a potential role for TUG1 as a promising diagnostic marker of diabetic nephropathy.


Sign in / Sign up

Export Citation Format

Share Document