Wnt Signaling: From Mesenchymal Cell Fate to Lipogenesis and Other Mature Adipocyte Functions

Diabetes ◽  
2021 ◽  
pp. dbi200015
Author(s):  
Devika P. Bagchi ◽  
Ormond A. MacDougald
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kseniya Obraztsova ◽  
Maria C. Basil ◽  
Ryan Rue ◽  
Aravind Sivakumar ◽  
Susan M. Lin ◽  
...  

Abstract Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of Tsc2 in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal Tsc2-deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype.


Theranostics ◽  
2019 ◽  
Vol 9 (26) ◽  
pp. 8196-8205 ◽  
Author(s):  
Weicai Wang ◽  
Delan Huang ◽  
Jianhan Ren ◽  
Runze Li ◽  
Zhicai Feng ◽  
...  

Science ◽  
2007 ◽  
Vol 317 (5839) ◽  
pp. 807-810 ◽  
Author(s):  
A. S. Brack ◽  
M. J. Conboy ◽  
S. Roy ◽  
M. Lee ◽  
C. J. Kuo ◽  
...  

2018 ◽  
Vol 23 (2) ◽  
pp. 151-153 ◽  
Author(s):  
Mark C. Horowitz ◽  
Steven M. Tommasini
Keyword(s):  

2019 ◽  
Vol 99 (1) ◽  
pp. 69-78 ◽  
Author(s):  
R. Sekiguchi ◽  
D. Martin ◽  
K.M. Yamada ◽  

Branching organs, including the salivary and mammary glands, lung, and kidney, arise as epithelial buds that are morphologically very similar. However, the mesenchyme is known to guide epithelial morphogenesis and to help govern cell fate and eventual organ specificity. We performed single-cell transcriptome analyses of 14,441 cells from embryonic day 12 submandibular and parotid salivary glands to characterize their molecular identities during bud initiation. The mesenchymal cells were considerably more heterogeneous by clustering analysis than the epithelial cells. Nonetheless, distinct clusters were evident among even the epithelial cells, where unique molecular markers separated presumptive bud and duct cells. Mesenchymal cells formed separate, well-defined clusters specific to each gland. Neuronal and muscle cells of the 2 glands in particular showed different markers and localization patterns. Several gland-specific genes were characteristic of different rhombomeres. A muscle cluster was prominent in the parotid, which was not myoepithelial or vascular smooth muscle. Instead, the muscle cluster expressed genes that mediate skeletal muscle differentiation and function. Striated muscle was indeed found later in development surrounding the parotid gland. Distinct spatial localization patterns of neuronal and muscle cells in embryonic stages appear to foreshadow later differences in adult organ function. These findings demonstrate that the establishment of transcriptional identities emerges early in development, primarily in the mesenchyme of developing salivary glands. We present the first comprehensive description of molecular signatures that define specific cellular landmarks for the bud initiation stage, when the neural crest–derived ectomesenchyme predominates in the salivary mesenchyme that immediately surrounds the budding epithelium. We also provide the first transcriptome data for the largely understudied embryonic parotid gland as compared with the submandibular gland, focusing on the mesenchymal cell populations.


Sign in / Sign up

Export Citation Format

Share Document