The Effect of Graded Doses of Insulin on Total Glucose Uptake, Glucose Oxidation, and Glucose Storage in Man

Diabetes ◽  
1982 ◽  
Vol 31 (11) ◽  
pp. 957-963 ◽  
Author(s):  
D. Thiebaud ◽  
E. Jacot ◽  
R. A. Defronzo ◽  
E. Maeder ◽  
E. Jequier ◽  
...  
1994 ◽  
Vol 86 (6) ◽  
pp. 677-687 ◽  
Author(s):  
J. Webber ◽  
E. Simpson ◽  
H. Parkin ◽  
I. A. MacDonald

1. The effects of acutely raising blood ketone body levels to those seen after 72 h of starvation were examined in 10 subjects after an overnight fast. Metabolic rate and respiratory exchange ratio were measured with indirect calorimetry before and during an insulin—glucose clamp. Arteriovenous differences were measured across forearm and subcutaneous abdominal adipose tissue. 2. In response to the clamp the respiratory exchange ratio rose from 0.82 to 0.83 during 3-hydroxybutyrate infusion and from 0.83 to 0.94 during control (saline) infusion (P < 0.001). 3. Forearm glucose uptake at the end of the clamp was 4.02 ± 0.95 (3-hydroxybutyrate infusion) and 7.09 ± 1.24 mmol min−1 100 ml−1 forearm (saline infusion). Whole body glucose uptake at the end of the clamp was 72.8 ± 7.9 (3-hydroxybutyrate infusion) and 51.0 ± 3.0 (saline infusion) mmol min−1 kg−1 body weight−1. 4. 3-Hydroxybutyrate infusion reduced the baseline abdominal venous—arterialized venous glycerol difference from 84 ± 28 to 25 ± 12 mmol/l and the non-esterified fatty acid difference from 0.60 ± 0.17 to 0.02 ± 0.09 mmol/l (P < 0.05 versus saline infusion). 5. Hyperketonaemia reduces adipose tissue lipolysis and decreases insulin-mediated forearm glucose uptake. Hyperketonaemia appears to prevent insulin-stimulated glucose oxidation, but does not reduce insulin-mediated glucose storage.


1989 ◽  
Vol 256 (6) ◽  
pp. E747-E752 ◽  
Author(s):  
C. P. Felley ◽  
E. M. Felley ◽  
G. D. van Melle ◽  
P. Frascarolo ◽  
E. Jequier ◽  
...  

The present study was designed to assess the role of hyperglycemia (150 mg/dl) vs. euglycemia (90 mg/dl) on glucose metabolism in vivo during the infusion of a triglyceride emulsion (Intralipid). Seven young healthy volunteers were studied on four occasions using the hyperinsulinemic clamp technique, twice during euglycemia and twice during hyperglycemia, without or with Intralipid. Glucose oxidation (O) was calculated from continuous respiratory exchange measurements, and glucose storage (S) was obtained as the difference between total glucose disposal (M) and O. Two-way analysis of variance with interaction term demonstrated 1) a significant increase for M with hyperglycemia and a decrease with Intralipid; no interaction, and 2) in euglycemia, O/M and S/M occurred in one-to-one ratios; on the other hand, during 150-mg/dl hyperglycemia, the ratio dropped roughly to 1:2. Intralipid had no effect on the ratio, and no interaction could be observed. These results suggest the existence of physiological regulatory mechanisms by which 1) the rise in plasma free fatty acid inhibits both oxidative and nonoxidative glucose disposal, and 2) the rise in glycemia stimulates predominantly nonoxidative glucose disposal.


1989 ◽  
Vol 263 (2) ◽  
pp. 325-332 ◽  
Author(s):  
M A Mindham ◽  
P A Mayes

1. An improved rat spleen perfusion is described incorporating a method of defibrination which avoids the use of heparin and enables the spleen to be perfused with rat blood for several hours at a haematocrit of 40% and for 12 h or more at a haematocrit of 20%. 2. Glucose oxidation accounted for 11.6% of the total oxygen consumption but this represented only 8% of total glucose uptake, which was largely converted to lactate and released into the perfusate. However, significant amounts of lactate were oxidized. These results can be explained by the presence of at least two cell populations, one emphasizing the anaerobic oxidation of glucose and the other aerobic metabolism, particularly of lactate. 3. Non-esterified fatty acid and 3-hydroxybutyrate, when available at physiological concentrations, were shown to be major oxidative fuels of the spleen. 4. Chylomicron triacylglycerol was hydrolysed readily and taken up, but not oxidized extensively.


1983 ◽  
Vol 244 (3) ◽  
pp. E216-E221 ◽  
Author(s):  
D. Thiebaud ◽  
Y. Schutz ◽  
K. Acheson ◽  
E. Jacot ◽  
R. A. DeFronzo ◽  
...  

The effect of graded levels of hyperinsulinemia on energy expenditure, while euglycemia was maintained by glucose infusion, was examined in 22 healthy young male volunteers by using the euglycemic insulin clamp technique in combination with indirect calorimetry. Insulin was infused at five rates to achieve steady-state hyperinsulinemic plateaus of 62 +/- 4, 103 +/- 5, 170 +/- 10, 423 +/- 16, and 1,132 +/- 47 microU/ml. Total body glucose uptake during each of the five insulin clamp studies was 0.41, 0.50, 0.66, 0.74, and 0.77 g/min, respectively. Glucose storage (calculated from the difference between total body glucose uptake minus total glucose oxidation) was 0.25, 0.29, 0.43, 0.49, and 0.52 g/min for each group, respectively, and represented over 60-70% of total glucose uptake. The net increment in energy expenditure after intravenous glucose was 0.08, 0.10, 0.14, 0.17, and 0.23 kcal/min, respectively. Throughout the physiological and supraphysiological range of insulinemia, there was a significant relationship (r = 0.95, P less than 0.001) between the increment in energy expenditure and glucose storage, indicating an energy cost of 0.45 kcal/g glucose stored. However, at each level of hyperinsulinemia, the theoretical value for the energy cost of glucose storage (assuming that all of the glucose is stored in the form of glycogen) could account for only 45-63% of the actual increase in energy expenditure that was measured by indirect calorimetry. These results indicate that factors in addition to glucose storage as glycogen must be responsible for the increase in energy expenditure that accompanies glucose infusion.


1993 ◽  
Vol 265 (6) ◽  
pp. E898-E905 ◽  
Author(s):  
L. J. Mandarino ◽  
A. Consoli ◽  
A. Jain ◽  
D. E. Kelley

Insulin and glucose stimulate glucose uptake in human muscle by different mechanisms. Insulin has well-known effects on glucose transport, glycogen synthesis, and glucose oxidation, but the effects of hyperglycemia on the intracellular routing of glucose are less well characterized. We used euglycemic and hyperglycemic clamps with leg balance measurements to determine how hyperglycemia affects skeletal muscle glucose storage, glycolysis, and glucose oxidation in normal human subjects. Glycogen synthase (GS) and pyruvate dehydrogenase complex (PDHC) activities were determined using muscle biopsies. During basal insulin replacement, hyperglycemia (11.6 +/- 0.31 mM) increased leg muscle glucose uptake (0.522 +/- 0.129 vs. 0.261 +/- 0.071 mumol.min-1 x 100 ml leg tissue-1, P < 0.05), storage (0.159 +/- 0.082 vs. -0.061 +/- 0.055, P < 0.05), and oxidation (0.409 +/- 0.080 vs. 0.243 +/- 0.085, P < 0.05) compared with euglycemia (6.63 +/- 0.33 mM). The increase in basal glucose oxidation due to hyperglycemia was associated with increased muscle PDHC activity (0.499 +/- 0.087 vs. 0.276 +/- 0.049, P < 0.05). However, the increase in leg glucose storage was not accompanied by an increase in muscle GS activity. During hyperinsulinemia, hyperglycemia (11.9 +/- 0.49 mM) also caused an additional increase in leg glucose uptake over euglycemia (6.14 +/- 0.42 mM) alone (5.75 +/- 1.25 vs. 3.75 +/- 0.58 mumol.min-1 x 100 ml leg-1, P < 0.05). In this case the major intracellular effect of hyperglycemia was to increase glucose storage (5.03 +/- 1.16 vs. 2.39 +/- 0.37, P < 0.05). At hyperinsulinemia, hyperglycemia had no effect on muscle GS or PDHC activity.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 245 (3) ◽  
pp. 789-793 ◽  
Author(s):  
D Isler ◽  
H P Hill ◽  
M K Meier

To quantify the potential of brown adipose tissue as a target organ for glucose oxidation, O2 consumption and glucose metabolism in isolated rat brown adipocytes were measured in the presence and absence of insulin, by using the beta-agonists isoprenaline or Ro 16-8714 to stimulate thermogenesis. Basal metabolic rate (278 mumol of O2/h per g of lipid) was maximally stimulated with isoprenaline (20 nm) and Ro 16-8714 (20 microM) to 1633 and 1024 mumol of O2/h per g respectively, whereas insulin had no effect on O2 consumption. Total glucose uptake, derived from the sum of [U-14C]glucose incorporation into CO2 and total lipids and lactate release, was enhanced with insulin. Isoprenaline and Ro 16-8714 had no effect on insulin-induced glucose uptake, but promoted glucose oxidation while inhibiting insulin-dependent lipogenesis and lactate production. A maximal value for glucose oxidation was obtained under the combined action of Ro 16-8714 and insulin, which corresponded to an equivalent of 165 mumol of O2/h per g of lipid. This makes it clear that glucose is a minor substrate for isolated brown adipocytes, fuelling thermogenesis by a maximum of 16%.


1992 ◽  
Vol 263 (1) ◽  
pp. E17-E22 ◽  
Author(s):  
H. Katz ◽  
M. Homan ◽  
P. Butler ◽  
R. Rizza

[3-3H]glucose is frequently used to measure glucose turnover in humans. If fructose 6-phosphate-fructose 1,6-diphosphate cycling (Fpc) is negligible in both liver and muscle, then [3-3H]- and [6-14C]glucose (corrected for Cori cycle activity) should provide equivalent measures of glucose turnover. In addition, if glycogenolysis is fully suppressed, then [14C]lactate specific activity should equal that of [6-14C]glucose from which it was derived, and oxidation of [6-14C]glucose, as measured by rate of generation of 14CO2, should equal total glucose oxidation (i.e., that derived from intra- and extracellular pools) as measured by indirect calorimetry. To address these questions, glucose turnover was measured simultaneously with [3-3H]- and [6-14C]glucose in the basal state and in presence of low (approximately 200 pM) and high (approximately 750 pM) insulin concentrations. Glucose turnover rates measured with [3-3H]- and [6-14C]glucose were equivalent at all insulin concentrations, indicating that Fpc had no detectable effect on measurement of glucose appearance. [14C]lactate specific activity was lower (P less than 0.01) than that of [6-14C]glucose in the basal state but not during either low- or high-dose insulin infusion, implying that all lactate was derived from extracellular glucose. On the other hand, glucose oxidation as measured by rate of generation of 14CO2 was lower (P less than 0.05) than glucose oxidation as measured by indirect calorimetry during both insulin infusions, implying either that suppression of glycogenolysis was not complete in all tissues or that one or both of these techniques do not accurately measure glucose oxidation.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 303 (7) ◽  
pp. E908-E916 ◽  
Author(s):  
Jiarong Liu ◽  
Wei Zhang ◽  
Gin C. Chuang ◽  
Helliner S. Hill ◽  
Ling Tian ◽  
...  

We have suggested previously that Tribbles homolog 3 (TRIB3), a negative regulator of Akt activity in insulin-sensitive tissues, could mediate glucose-induced insulin resistance in muscle under conditions of chronic hyperglycemia (Liu J, Wu X, Franklin JL, Messina JL, Hill HS, Moellering DR, Walton RG, Martin M, Garvey WT. Am J Physiol Endocrinol Metab 298: E565–E576, 2010). In the current study, we have assessed short-term physiological regulation of TRIB3 in skeletal muscle and adipose tissues by nutrient excess and fasting as well as TRIB3's ability to modulate glucose transport and mitochondrial oxidation. In Sprague-Dawley rats, we found that short-term fasting enhanced insulin sensitivity concomitantly with decrements in TRIB3 mRNA (66%, P < 0.05) and protein (81%, P < 0.05) in muscle and increments in TRIB3 mRNA (96%, P < 0.05) and protein (∼10-fold, P < 0.05) in adipose tissue compared with nonfasted controls. On the other hand, rats fed a Western diet for 7 days became insulin resistant concomitantly with increments in TRIB3 mRNA (155%, P < 0.05) and protein (69%, P = 0.0567) in muscle and a decrease in the mRNA (76%, P < 0.05) and protein (70%, P < 0.05) in adipose. In glucose transport and mitochondria oxidation studies using skeletal muscle cells, we found that stable TRIB3 overexpression impaired insulin-stimulated glucose uptake without affecting basal glucose transport and increased both basal glucose oxidation and the maximal uncoupled oxygen consumption rate. With stable knockdown of TRIB3, basal and insulin-stimulated glucose transport rates were increased, whereas basal glucose oxidation and the maximal uncoupled oxygen consumption rate were decreased. In conclusion, TRIB3 impacts glucose uptake and oxidation oppositely in muscle and fat according to levels of nutrient availability. The above data for the first time implicate TRIB3 as a potent physiological regulator of insulin sensitivity and mitochondrial glucose oxidation under conditions of nutrient deprivation and excess.


1963 ◽  
Vol 204 (1) ◽  
pp. 147-152 ◽  
Author(s):  
E. N. Bergman

Labeled glucose was infused into four groups of ewes: nonpregnant fed; nonpregnant fasted; twin-pregnant fed; and twin-pregnant hypoglycemic and ketonemic. Mean glucose pool sizes were 157 and 127 mg/kg in nonpregnant and pregnant ewes, respectively, with decreased values in both fasting and hypoglycemia. Nonpregnant animals had glucose turnover rates averaging 4.0 g/hr (0.22 g/hr·kg3/4) when fed and only 2.7 g/hr (0.15 g/hr·kg3/4) after fasting. These values were only 60–80% of that of pregnant sheep, implying that glucose utilization due to twin-pregnancy was 20–40% of the total. The mean glucose space was about 27% of the body weight, indicating predominantly extracellular distribution of glucose even in hypoglycemia. In all animals about 8–10% of the exhaled CO2 was found to be derived from glucose oxidation and about one-third of the total glucose turnover was used for CO2 production. Comparisons of these data to values obtained from other mammals indicated further that there is a lower rate of glucose oxidation and metabolism in ruminants.


1996 ◽  
Vol 270 (3) ◽  
pp. H817-H826 ◽  
Author(s):  
H. Bolukoglu ◽  
G. W. Goodwin ◽  
P. H. Guthrie ◽  
S. G. Carmical ◽  
T. M. Chen ◽  
...  

The acute adaptation of myocardial glucose metabolism in response to low-flow ischemia and reperfusion was investigated in isolated working rat hearts perfused with bicarbonate saline containing glucose (10 mM) and insulin (40 microU/ml). Reversible low-flow ischemia was induced by reducing coronary perfusion pressure from 100 to 35 cmH2O. Tritiated glucose was used to assess rates of glucose transport and phosphorylation, flux from glucose to pyruvate, and oxidation of exogenous glucose. Rates of glycogen synthesis and glycolysis were also assessed. With ischemia, cardiac power decreased by more than two-thirds. Rates of glucose uptake and flux from glucose to pyruvate remained unchanged, while glucose oxidation declined by 61%. Rates of lactate release more than doubled, and fractional enrichment of glycogen remained the same. During reperfusion, glucose oxidation returned to the preischemic values. When isoproterenol was added during ischemia, glucose uptake increased, glycogen decreased, and lactate release increased. No effect was seen with pacing. We conclude that during low-flow ischemia and with glucose as the only exogenous substrate, net glucose uptake remains unchanged. There is a reversible redirection between glycolysis and glucose oxidation, while glycogen synthesis continues during ischemia and is enhanced with reperfusion.


Sign in / Sign up

Export Citation Format

Share Document