Impairment of glucose disposal by infusion of triglycerides in humans: role of glycemia

1989 ◽  
Vol 256 (6) ◽  
pp. E747-E752 ◽  
Author(s):  
C. P. Felley ◽  
E. M. Felley ◽  
G. D. van Melle ◽  
P. Frascarolo ◽  
E. Jequier ◽  
...  

The present study was designed to assess the role of hyperglycemia (150 mg/dl) vs. euglycemia (90 mg/dl) on glucose metabolism in vivo during the infusion of a triglyceride emulsion (Intralipid). Seven young healthy volunteers were studied on four occasions using the hyperinsulinemic clamp technique, twice during euglycemia and twice during hyperglycemia, without or with Intralipid. Glucose oxidation (O) was calculated from continuous respiratory exchange measurements, and glucose storage (S) was obtained as the difference between total glucose disposal (M) and O. Two-way analysis of variance with interaction term demonstrated 1) a significant increase for M with hyperglycemia and a decrease with Intralipid; no interaction, and 2) in euglycemia, O/M and S/M occurred in one-to-one ratios; on the other hand, during 150-mg/dl hyperglycemia, the ratio dropped roughly to 1:2. Intralipid had no effect on the ratio, and no interaction could be observed. These results suggest the existence of physiological regulatory mechanisms by which 1) the rise in plasma free fatty acid inhibits both oxidative and nonoxidative glucose disposal, and 2) the rise in glycemia stimulates predominantly nonoxidative glucose disposal.

2009 ◽  
Vol 103 (2) ◽  
pp. 295-305 ◽  
Author(s):  
John A. Monro ◽  
Suman Mishra ◽  
Bernard Venn

Glycaemic responses to foods reflect the balance between glucose loading into, and its clearance from, the blood. Current in vitro methods for glycaemic analysis do not take into account the key role of glucose disposal. The present study aimed to develop a food intake-sensitive method for measuring the glycaemic impact of food quantities usually consumed, as the difference between release of glucose equivalents (GGE) from food during in vitro digestion and a corresponding estimate of clearance of them from the blood. Five foods – white bread, fruit bread, muesli bar, mashed potato and chickpeas – were consumed on three occasions by twenty volunteers to provide blood glucose response (BGR) curves. GGE release during in vitro digestion of the foods was also plotted. Glucose disposal rates estimated from downward slopes of the BGR curves allowed GGE dose-dependent cumulative glucose disposal to be calculated. By subtracting cumulative glucose disposal from cumulative in vitro GGE release, accuracy in predicting the in vivo glycaemic effect from in vitro GGE values was greatly improved. GGEin vivo = 0·99GGEin vitro+0·75 (R2 0·88). Furthermore, the difference between the curves of cumulative GGE release and disposal closely mimicked in vivo incremental BGR curves. We conclude that valid measurement of the glycaemic impact of foods may be obtained in vitro, and expressed as grams of glucose equivalents per food quantity, by taking account not only of GGE release from food during in vitro digestion, but also of blood glucose clearance in response to the food quantity.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Sumit R Monu ◽  
Mani Maheshwari ◽  
Hong Wang ◽  
Ed Peterson ◽  
Oscar Carretero

In obesity, renal damage is caused by increase in renal blood flow (RBF), glomerular capillary pressure (P GC ), and single nephron glomerular filtration rate but the mechanism behind this alteration in renal hemodynamics is unclear. P GC is controlled mainly by the afferent arteriole (Af-Art) resistance. Af-Art resistance is regulated by mechanism similar to that in other arterioles and in addition, it is regulated by two intrinsic feedback mechanisms: 1) tubuloglomerular feedback (TGF) that causes Af-Art constriction in response to an increase in sodium chloride (NaCl) in the macula densa, via sodium–potassium-2-chloride cotransporter-2 (NKCC2) and 2) connecting tubule glomerular feedback (CTGF) that causes Af-Art dilatation and is mediated by connecting tubule via epithelial sodium channel (ENaC). CTGF is blocked by the ENaC inhibitor benzamil. Attenuation of TGF reduces Af-Art resistance and allows systemic pressure to get transmitted to the glomerulus that causes glomerular barotrauma/damage. In the current study, we tested the hypothesis that TGF is attenuated in obesity and that CTGF contributes to this effect. We used Zucker obese rats (ZOR) while Zucker lean rats (ZLR) served as controls. We performed in-vivo renal micropuncture of individual rat nephrons while measuring stop-flow pressure (P SF ), an index of P GC. TGF response was measured as a decrease in P SF induced by changing the rate of late proximal perfusion from 0 to 40nl/min in stepwise manner.CTGF was calculated as the difference of P SF value between vehicle and benzamil treatment, at each perfusion rate. Maximal TGF response was significantly less in ZOR (6.16 ± 0.52 mmHg) when compared to the ZLR (8.35 ± 1.00mmHg), p<0.05 , indicating TGF resetting in the ZOR. CTGF was significantly higher in ZOR (6.33±1.95 mmHg) when compared to ZLR (1.38±0.89 mmHg), p<0.05 . When CTGF was inhibited with the ENaC blocker Benzamil (1μM), maximum P SF decrease was 12.30±1.72 mmHg in ZOR and 10.60 ± 1.73 mmHg in ZLR, indicating that blockade of CTGF restored TGF response in ZOR. These observations led us to conclude that TGF is reset in ZOR and that enhanced CTGF contributes to this effect. Increase in CTGF may explain higher renal blood flow, increased P GC and higher glomerular damage in obesity.


1978 ◽  
Vol 174 (3) ◽  
pp. 965-977 ◽  
Author(s):  
J R S Arch ◽  
E A Newsholme

1. The maximal activities of 5′-nucleotidase, adenosine kinase and adenosine deaminase together with the Km values for their respective substrates were measured in muscle, nervous tissue and liver from a large range of animals to provide information on the mechanism of control of adenosine concentration in the tissues. 2. Detailed evidence that the methods used were optimal for the extraction and assay of these enzymes has been deposited as Supplementary Publication SUP 50088 (16pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K.,from whom copies can be obtained on the terms indicated in Biochem. J. (1978), 169, 5. This evidence includes the effects of pH and temperature on the activities of the enzymes. 3. In many tissues, the activities of 5′-nucleotidase were considerably higher than the sum of the activities of adenosine kinase and deaminase, which suggests that the activity of the nucleotidase must be markedly inhibited in vivo so that adenosine does not accumulate. In the tissues in which comparison is possible, the Km of the nucleotidase is higher than the AMP content of the tissue, and since some of the latter may be bound within the cell, the low concentration of substrate may, in part, be responsible for a low activity in vivo. 4. In most tissues and animals investigated, the values of the Km of adenosine kinase for adenosine are between one and two orders of magnitude lower than those for the deaminase. It is suggested that 5′-nucleotidase and adenosine kinase are simultaneously active so that a substrate cycle between AMP and adenosine is produced: the difference in Km values between kinase and deaminase indicates that, via the cycle, small changes in activity of kinase or nucleotidase produce large changes in adenosine concentration. 5. The activities of adenosine kinase or deaminase from vertebrate muscles are inversely correlated with the activities of phosphorylase in these muscles. Since the magnitude of the latter activities are indicative of the anaerobic nature of muscles, this negative correlation supports the hypothesis that an important role of adenosine is the regulation of blood flow in the aerobic muscles.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 415 ◽  
Author(s):  
Naveed Sabir ◽  
Tariq Hussain ◽  
Yi Liao ◽  
Jie Wang ◽  
Yinjuan Song ◽  
...  

Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis (Mtb) complex causing bovine tuberculosis (TB) and imposing a high zoonotic threat to human health. Kallikreins (KLKs) belong to a subgroup of secreted serine proteases. As their role is established in various physiological and pathological processes, it is likely that KLKs expression may mediate a host immune response against the M. bovis infection. In the current study, we report in vivo and in vitro upregulation of KLK12 in the M. bovis infection. To define the role of KLK12 in immune response regulation of murine macrophages, we produced KLK12 knockdown bone marrow derived macrophages (BMDMs) by using siRNA transfection. Interestingly, the knockdown of KLK12 resulted in a significant downregulation of autophagy and apoptosis in M. bovis infected BMDMs. Furthermore, we demonstrated that this KLK12 mediated regulation of autophagy and apoptosis involves mTOR/AMPK/TSC2 and BAX/Bcl-2/Cytochrome c/Caspase 3 pathways, respectively. Similarly, inflammatory cytokines IL-1β, IL-6, IL-12 and TNF-α were significantly downregulated in KLK12 knockdown macrophages but the difference in IL-10 and IFN-β expression was non-significant. Taken together, these findings suggest that upregulation of KLK12 in M. bovis infected murine macrophages plays a substantial role in the protective immune response regulation by modulating autophagy, apoptosis and pro-inflammatory pathways. To our knowledge, this is the first report on expression and the role of KLK12 in the M. bovis infection and the data may contribute to a new paradigm for diagnosis and treatment of bovine TB.


2006 ◽  
Vol 17 (10) ◽  
pp. 4400-4410 ◽  
Author(s):  
Michael Thorsen ◽  
Yujun Di ◽  
Carolina Tängemo ◽  
Montserrat Morillas ◽  
Doryaneh Ahmadpour ◽  
...  

Arsenic is widely distributed in nature and all organisms possess regulatory mechanisms to evade toxicity and acquire tolerance. Yet, little is known about arsenic sensing and signaling mechanisms or about their impact on tolerance and detoxification systems. Here, we describe a novel role of the S. cerevisiae mitogen-activated protein kinase Hog1p in protecting cells during exposure to arsenite and the related metalloid antimonite. Cells impaired in Hog1p function are metalloid hypersensitive, whereas cells with elevated Hog1p activity display improved tolerance. Hog1p is phosphorylated in response to arsenite and this phosphorylation requires Ssk1p and Pbs2p. Arsenite-activated Hog1p remains primarily cytoplasmic and does not mediate a major transcriptional response. Instead, hog1Δ sensitivity is accompanied by elevated cellular arsenic levels and we demonstrate that increased arsenite influx is dependent on the aquaglyceroporin Fps1p. Fps1p is phosphorylated on threonine 231 in vivo and this phosphorylation critically affects Fps1p activity. Moreover, Hog1p is shown to affect Fps1p phosphorylation. Our data are the first to demonstrate Hog1p activation by metalloids and provides a mechanism by which this kinase contributes to tolerance acquisition. Understanding how arsenite/antimonite uptake and toxicity is modulated may prove of value for their use in medical therapy.


2001 ◽  
Vol 281 (1) ◽  
pp. R1-R9 ◽  
Author(s):  
A. R. Tagliaferro ◽  
A. M. Ronan

The biological role of dehydroepiandrosterone (DHEA) and its less active sulphated conjugate DHEAS was investigated in two experiments using Yucatan miniature swine. In experiment 1, plasma levels of both DHEA(S) among males were greater than female pigs that ranged in age from 0.3 to 84 mo old ( P< 0.0001). In males, DHEA(S) were related inversely to serum triglycerides; DHEA was positively related to triglycerides in females ( P < 0.01). In experiment 2, four 2-yr old male pigs, used as their own control, showed a 5% decrease in body weight, 11% increase in energy expenditure, 88% increase in lipid, and 100% decrease in glucose utilization ( P < 0.0001) in response to DHEA vs. placebo treatments when adjusted for body weight. Plasma DHEA(S) were not different between treatment conditions. Glucose tolerance and plasma insulin levels were not different from controls. In vivo response to norepinephrine indicated β-adrenergic sensitivity was altered by DHEA. Present findings suggest DHEA and/or its hormone products are important in modulating energy expenditure and lipid utilization for energy in male animals. The role of DHEA in energy metabolism and the difference between sexes warrant further investigation.


2021 ◽  
Author(s):  
Octavio Morante-Palacios ◽  
Laura Ciudad ◽  
Raphael Micheroli ◽  
Carlos de la Calle-Fabregat ◽  
Tianlu Li ◽  
...  

Glucocorticoids (GCs) exert potent anti-inflammatory effects in immune cells through the glucocorticoid receptor (GR). Dendritic cells (DCs), central actors for coordinating immune responses, acquire tolerogenic properties in response to GCs. Tolerogenic DCs (tolDCs) have emerged as a potential treatment for various inflammatory diseases. To date, the underlying cell type-specific regulatory mechanisms orchestrating GC-mediated acquisition of immunosuppressive properties remain poorly understood. In this study, we investigated the transcriptomic and epigenomic remodeling associated with differentiation to DCs in the presence of GCs. Our analysis demonstrates a major role of MAFB in this process, in synergy with GR. GR and MAFB both interact with methylcytosine dioxygenase TET2 and bind to genomic loci that undergo specific demethylation in tolDCs. We also show that the role of MAFB is more extensive, binding to thousands of genomic loci in tolDCs. Finally, MAFB knockdown erases the tolerogenic properties of tolDCs and reverts the specific DNA demethylation and gene upregulation. The preeminent role of MAFB is also demonstrated in vivo for myeloid cells from synovium in rheumatoid arthritis following GC treatment. Our results imply that, once directly activated by GR, MAFB takes over the main roles to orchestrate the epigenomic and transcriptomic remodeling that define the tolerogenic phenotype.


2000 ◽  
Vol 352 (3) ◽  
pp. 731-738 ◽  
Author(s):  
Mary C. SUGDEN ◽  
Maria L. LANGDOWN ◽  
Robert A. HARRIS ◽  
Mark J. HOLNESS

Activation of the pyruvate dehydrogenase (PDH) complex (PDHC) promotes glucose disposal, whereas inactivation conserves glucose. The PDH kinases (PDHKs) regulate glucose oxidation through inhibitory phosphorylation of PDHC. The adult rat heart contains three PDHK isoforms PDHK1, PDHK2 and PDHK4. Using Western-blot analysis, with specific antibodies raised against individual recombinant PDHK1, PDHK2 and PDHK4, the present study investigated PDHK isoform expression in the developing rat heart and adulthood. We identified clear differences in the patterns of protein expression of each of these PDHK isoforms during the first 3 weeks of post-natal development, with most marked up-regulation of isoforms PDHK1 and PDHK4. Distinctions between the three cardiac PDHK isoforms were also demonstrated with respect to post-neonatal maturational up-regulation; with greatest up-regulation of PDHK1 and least up-regulation of PDHK4 from the post-neonatal period until maturity. The study also examined the role of thyroid hormone status and lipid supply on PDHK isoform expression. We observed marked selective increases in the amount of PDHK4 protein present relative to total cardiac protein in both hyperthyroidism and high-fat feeding. Overall, our data identify PDHK isoform PDHK1 as being of more potential regulatory importance for glucose oxidation in the adult compared with the neonatal heart, and cardiac PDHK4 as a PDHK isoform whose expression is specifically responsive to changes in lipid supply, suggesting that its up-regulation during early post-natal life may be the perinatal switch to use fatty acids as the energy source. We also identify regulation of pyruvate sensitivity of cardiac PDHK as a physiological variable, a change in which requires factors in addition to a change in lipid supply.


1993 ◽  
Vol 85 (5) ◽  
pp. 525-535 ◽  
Author(s):  
Luigi S. Brandi ◽  
Donatella Santoro ◽  
Andrea Natali ◽  
Fiorella Altomonte ◽  
Simona Baldi ◽  
...  

1. Stress is associated with a severe, yet reversible, form of insulin resistance. The aim of this study was to quantify the kinetics of insulin action (sensitivity and responsiveness) on intermediary metabolism during post-surgical stress. 2. We studied nine patients 6–8 h after major uncomplicated surgery, and eight healthy subjects matched for age, weight, glucose tolerance and duration of fast. A three-step isoglycaemic insulin clamp was combined with indirect calorimetry, [6-3H]glucose infusion and the forearm technique. 3. The following significant (P <0.05 or less) abnormalities were found in the patients. Hepatic glucose production was higher at baseline, and less suppressed by insulin. Whole-body glucose disposal was impaired at all insulin doses (by 33–60%). Glucose oxidation was depressed throughout the dose range but its increments in response to insulin were normal. In contrast, non-oxidative glucose disposal was essentially unresponsive. At all insulin levels, forearm glucose extraction was markedly depressed and forearm lactate release was in excess of concurrent glucose uptake, suggesting ongoing glycogenolysis despite insulin. Total lipolysis (plasma free fatty acid and glycerol levels) promptly responded to insulin but remained higher than in the control subjects throughout. In the forearm, even the highest insulin dose could not suppress net free fatty acid and glycerol release. Total lipid oxidation was increased throughout the insulin range, and calculated direct free fatty acid (as opposed to plasma free fatty acid) oxidation was virtually unaffected by insulin. Protein oxidation was slightly (35%) increased, but was suppressed normally in response to insulin. Energy expenditure was 20% higher at baseline, and tailed to rise with insulin. Arterial blood pH values were consistently (if slightly) lower, and net forearm proton release was higher, both at baseline and daring insulin infusion. 4. Post-surgical unsulin resistance is characterized by normal sensitivity but decreased responsiveness of glucose oxidation, lipolysis and plasma free fatty acid oxidation, whereas glycogen synthesis and direct free fatty acid oxidation are virtually unresponsive. For both glucose and lipid metabolism, the insulin resistance is particularly severe in forearm tissues, in which mild metabolic acidosis may play an additional role.


Sign in / Sign up

Export Citation Format

Share Document