scholarly journals Branched-Chain Amino Acids Exacerbate Obesity-Related Hepatic Glucose and Lipid Metabolic Disorders via Attenuating Akt2 Signaling

Author(s):  
Ada Admin ◽  
Huishou Zhao ◽  
Fuyang Zhang ◽  
Dan Sun ◽  
Xiong Wang ◽  
...  

Branched chain amino acids (BCAAs) are associated with the progression of obesity-related metabolic disorders, including T2DM and non-alcoholic fatty liver disease. However, whether BCAAs disrupt the homeostasis of hepatic glucose and lipid metabolism remains unknown. In this study, we observed that BCAAs supplementation significantly reduced high-fat (HF) diet-induced hepatic lipid accumulation while increasing the plasma lipid levels and promoting muscular and renal lipid accumulation. Further studies demonstrated that BCAAs supplementation significantly increased hepatic gluconeogenesis and suppressed hepatic lipogenesis in HF diet-induced obese (DIO) mice. These phenotypes resulted from severe attenuation of Akt2 signaling via mTORC1- and mTORC2-dependent pathways. BCAAs/branched-chain α-keto acids (BCKAs) chronically suppressed Akt2 activation through mTORC1 and mTORC2 signaling and promoted Akt2 ubiquitin-proteasome-dependent degradation through the mTORC2 pathway. Moreover, the E3 ligase Mul1 played an essential role in BCAAs/BCKAs-mTORC2-induced Akt2 ubiquitin-dependent degradation. We also demonstrated that BCAAs inhibited hepatic lipogenesis by blocking Akt2/SREBP1/INSIG2a signaling and increased hepatic glycogenesis by regulating Akt2/Foxo1 signaling. Collectively, these data demonstrate that in DIO mice, BCAAs supplementation resulted in serious hepatic metabolic disorder and severe liver insulin resistance: insulin failed to not only suppress gluconeogenesis but also activate lipogenesis. Intervening BCAA metabolism is a potential therapeutic target for severe insulin-resistant disease.<br>

2020 ◽  
Author(s):  
Ada Admin ◽  
Huishou Zhao ◽  
Fuyang Zhang ◽  
Dan Sun ◽  
Xiong Wang ◽  
...  

Branched chain amino acids (BCAAs) are associated with the progression of obesity-related metabolic disorders, including T2DM and non-alcoholic fatty liver disease. However, whether BCAAs disrupt the homeostasis of hepatic glucose and lipid metabolism remains unknown. In this study, we observed that BCAAs supplementation significantly reduced high-fat (HF) diet-induced hepatic lipid accumulation while increasing the plasma lipid levels and promoting muscular and renal lipid accumulation. Further studies demonstrated that BCAAs supplementation significantly increased hepatic gluconeogenesis and suppressed hepatic lipogenesis in HF diet-induced obese (DIO) mice. These phenotypes resulted from severe attenuation of Akt2 signaling via mTORC1- and mTORC2-dependent pathways. BCAAs/branched-chain α-keto acids (BCKAs) chronically suppressed Akt2 activation through mTORC1 and mTORC2 signaling and promoted Akt2 ubiquitin-proteasome-dependent degradation through the mTORC2 pathway. Moreover, the E3 ligase Mul1 played an essential role in BCAAs/BCKAs-mTORC2-induced Akt2 ubiquitin-dependent degradation. We also demonstrated that BCAAs inhibited hepatic lipogenesis by blocking Akt2/SREBP1/INSIG2a signaling and increased hepatic glycogenesis by regulating Akt2/Foxo1 signaling. Collectively, these data demonstrate that in DIO mice, BCAAs supplementation resulted in serious hepatic metabolic disorder and severe liver insulin resistance: insulin failed to not only suppress gluconeogenesis but also activate lipogenesis. Intervening BCAA metabolism is a potential therapeutic target for severe insulin-resistant disease.<br>


Diabetes ◽  
2020 ◽  
Vol 69 (6) ◽  
pp. 1164-1177 ◽  
Author(s):  
Huishou Zhao ◽  
Fuyang Zhang ◽  
Dan Sun ◽  
Xiong Wang ◽  
Xiaomeng Zhang ◽  
...  

2004 ◽  
Vol 82 (7) ◽  
pp. 506-514 ◽  
Author(s):  
Enoka P Wijekoon ◽  
Craig Skinner ◽  
Margaret E Brosnan ◽  
John T Brosnan

We investigated amino acid metabolism in the Zucker diabetic fatty (ZDF Gmi fa/fa) rat during the prediabetic insulin-resistant stage and the frank type 2 diabetic stage. Amino acids were measured in plasma, liver, and skeletal muscle, and the ratios of plasma/liver and plasma/skeletal muscle were calculated. At the insulin-resistant stage, the plasma concentrations of the gluconeogenic amino acids aspartate, serine, glutamine, glycine, and histidine were decreased in the ZDF Gmi fa/fa rats, whereas taurine, α-aminoadipic acid, methionine, phenylalanine, tryptophan, and the 3 branched-chain amino acids were significantly increased. At the diabetic stage, a larger number of gluconeogenic amino acids had decreased plasma concentrations. The 3 branched-chain amino acids had elevated plasma concentrations. In the liver and the skeletal muscles, concentrations of many of the gluconeogenic amino acids were lower at both stages, whereas the levels of 1 or all of the branched-chain amino acids were elevated. These changes in amino acid concentrations are similar to changes seen in type 1 diabetes. It is evident that insulin resistance alone is capable of bringing about many of the changes in amino acid metabolism observed in type 2 diabetes.Key words: plasma amino acids, liver amino acids, muscle amino acids, gluconeogenesis.


2016 ◽  
Vol 64 (4) ◽  
pp. 926.1-926
Author(s):  
DW Lamming ◽  
NE Cummings ◽  
S Arriola Apelo ◽  
JC Neuman ◽  
B Schmidt ◽  
...  

“You are what you eat,” is a well-known axiom coined over 100 years ago by the French politician and epicure Jean Anthelme Brillat-Savarin. With this in mind, it is unsurprising that as diets across the United States and around the globe have become increasingly unhealthy, we have become unhealthy as well. Linked closely with the obesity epidemic, diabetes now affects over 29 million Americans (12.3% of adults over the age of 20). An additional 86 million Americans over the age of 20 are estimated to have pre-diabetes, making this disease an urgent health care problem.As type 2 diabetes is so closely associated with diet and obesity, it is possible that dietary interventions might prove more effective and affordable than pharmaceutical options. Reduced-calorie diets are notoriously difficult to sustain, but altering the macronutrient composition of the diet while keeping the total number of calories constant is an intriguing alternative. Recent findings suggest that a low protein, high carbohydrate diet can increase lifespan and improve metabolic health in rodents, yet the applicability of these studies to humans as well as the mechanisms driving this effect remain unclear.Here, we demonstrate for the first time in a randomized controlled trial that placing humans on a moderately protein restricted (PR) diet for one month improves multiple markers of metabolic health in humans, including fasting blood glucose and body mass index. We observed similar beneficial effects of moderate PR on the metabolic health of mice over the course of 3 months, with improved glucose tolerance starting as early as three weeks after initiation of the diet. While the precise dietary components altered in a PR diet that promote metabolic health have never been defined, we hypothesized that decreased levels of specific amino acids – the building blocks of protein – might mediate these effects.Several studies have shown that insulin-resistant humans have increased serum levels of the three branched-chain amino acids (BCAAs) – leucine, isoleucine, and valine. To study the contribution of reduced BCAAs to the beneficial effects of a PR diet, we placed mice on one of four amino acid (AA) defined diets: Control (21% of calories from AAs), Low AA (7% of calories from AAs), a Low BCAA diet in which the level of the three BCAAs was the same as in the Low AA (7%) diet, but all other AAs were at the level of a Control (21%) diet; and a Low Leucine diet in which only the level of leucine was reduced by 2/3rds. The caloric density of the diet as well as dietary fat was kept constant. We tracked weight and body composition over the course of three months, periodically testing glycemic control through the use of glucose, insulin, and pyruvate tolerance tests and the analysis of circulating hormones. At the end of the experiment, we isolated islets for the ex vivo analysis of glucose stimulated insulin secretion, and collected tissues and blood for subsequent phosphoproteomic and genomic analysis.We find that a specific reduction in dietary branched chain amino acids (BCAAs) is sufficient to improve glucose tolerance and body composition equivalently to a PR diet in mice. Intriguingly, the improved metabolic health of mice fed a low BCAA diet is independent of increased FGF21, an insulin sensitizing hormone believed to be responsible for many of the positive metabolic effects of a PR diet. Switching mice induced to be obese and insulin resistant through high-fat diet feeding to a diet with reduced levels of BCAAs stimulates rapid improvements in glucose tolerance and fat mass loss. Our results highlight a critical role for dietary quality in glycemic control, and suggest that a reduction of dietary BCAAs, or pharmacological interventions in this pathway, may offer a novel and translatable therapy to promote metabolic health.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 355 ◽  
Author(s):  
Jérémie David ◽  
Dominique Dardevet ◽  
Laurent Mosoni ◽  
Isabelle Savary-Auzeloux ◽  
Sergio Polakof

Elevated plasma branched-chain amino acids (BCAA) levels are often observed in obese insulin-resistant (IR) subjects and laboratory animals. A reduced capacity of the adipose tissues (AT) to catabolize BCAA has been proposed as an explanation, but it seems restricted to obesity models of genetically modified or high fat–fed rodents. We aimed to determine if plasma BCAA levels were increased in a model of IR without obesity and to explore the underlying mechanisms. Rats were fed with a standard diet, containing either starch or fructose. BCAA levels, body weight and composition were recorded before and after 5, 12, 30, or 45 days of feeding. Elevated blood BCAA levels were observed in our IR model with unaltered body weight and composition. No changes were observed in the liver or the AT, but instead an impaired capacity of the skeletal muscle to catabolize BCAA was observed, including reduced capacity for transamination and oxidative deamination. Although the elevated blood BCAA levels in the fructose-fed rat seem to be a common feature of the IR phenotype observed in obese subjects and high fat–fed animals, the mechanisms involved in such a metabolic phenomenon are different, likely involving the skeletal muscle BCAA metabolism.


2013 ◽  
Vol 38 (8) ◽  
pp. 836-843 ◽  
Author(s):  
Tianrun Li ◽  
Leiluo Geng ◽  
Xin Chen ◽  
Miranda Miskowiec ◽  
Xuan Li ◽  
...  

Nonalcoholic steatohepatitis (NASH) is a prevalent disease in countries around the world. The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine cannot be synthesized by the body and have been shown to promote muscle buildup; thus, it is logical to suggest that BCAAs can reduce fat deposition in the body. We used gonadectomized rats fed a high-fat diet to investigate the effects of BCAAs on lipid metabolism over an 8-week experimental period. Body composition, tissue histology, plasma lipid indices, and hormone levels were examined. We demonstrated that the body weights of rats were not significantly decreased but the mesenteric fat was significantly decreased (p < 0.05) in BCAA-treated rats. In addition, BCAAs decreased plasma lipid levels and fat deposition in the liver. At week 4, when the untreated rats displayed macrovesicular steatosis, BCAA-treated rats had only macrovesicular droplets in their hepatocytes. At week 8, when the untreated rat livers displayed profound inflammation and cirrhosis, BCAA-treated rat livers remained in the macrovesicular stage of steatosis. BCAAs induced higher blood glucose and plasma insulin levels (p < 0.05). BCAAs also improved liver blood flow by increasing mean arterial blood pressure and decreasing portal pressure, which helped delay the change in blood flow pattern to that of cirrhosis. BCAAs also induced the skeletal muscle to express higher levels of branched-chain α-keto acid dehydrogenase E1α, which indicates an enhanced metabolic capacity of BCAAs in muscle tissue. This study clearly demonstrates the effects of BCAAs on the amelioration of fat deposition in rats fed a high-fat diet.


Sign in / Sign up

Export Citation Format

Share Document