scholarly journals Hypoglycemia sensing neurons of the ventromedial hypothalamus require AMPK-induced Txn2 expression but are dispensable for physiological counterregulation

Author(s):  
Ada Admin ◽  
Simon Quenneville ◽  
Gwenaël Labouèbe ◽  
Davide Basco ◽  
Salima Metref ◽  
...  

The ventromedial nucleus of the hypothalamus (VMN) is involved in the counterregulatory response to hypoglycemia. VMN neurons activated by hypoglycemia (glucose inhibited, GI neurons) have been assumed to play a critical, although untested role in this response. Here, we show that expression of a dominant negative form of AMP-activated protein kinase (AMPK) or inactivation of AMPK <i>α1</i> and <i>α2</i> subunit genes in Sf1 neurons of the VMN selectively suppressed GI neuron activity. We found that <i>Txn2</i>, encoding a mitochondrial redox enzyme, was strongly down-regulated in the absence of AMPK activity and that reexpression of <i>Txn2</i> in Sf1 neurons restored GI neuron activity. In cell lines, <i>Txn2</i> was required to limit glucopenia-induced ROS production. In physiological studies, absence of GI neuron activity following AMPK suppression in the VMN had no impact on the counterregulatory hormone response to hypoglycemia nor on feeding. Thus, AMPK is required for GI neuron activity by controlling the expression of the anti-oxidant enzyme Txn2. However, the glucose sensing capacity of VMN GI neurons is not required for the normal counterregulatory response to hypoglycemia. Instead, it may represent a fail-safe system in case of impaired hypoglycemia sensing by peripherally located gluco-detection systems that are connected to the VMN.

2020 ◽  
Author(s):  
Ada Admin ◽  
Simon Quenneville ◽  
Gwenaël Labouèbe ◽  
Davide Basco ◽  
Salima Metref ◽  
...  

The ventromedial nucleus of the hypothalamus (VMN) is involved in the counterregulatory response to hypoglycemia. VMN neurons activated by hypoglycemia (glucose inhibited, GI neurons) have been assumed to play a critical, although untested role in this response. Here, we show that expression of a dominant negative form of AMP-activated protein kinase (AMPK) or inactivation of AMPK <i>α1</i> and <i>α2</i> subunit genes in Sf1 neurons of the VMN selectively suppressed GI neuron activity. We found that <i>Txn2</i>, encoding a mitochondrial redox enzyme, was strongly down-regulated in the absence of AMPK activity and that reexpression of <i>Txn2</i> in Sf1 neurons restored GI neuron activity. In cell lines, <i>Txn2</i> was required to limit glucopenia-induced ROS production. In physiological studies, absence of GI neuron activity following AMPK suppression in the VMN had no impact on the counterregulatory hormone response to hypoglycemia nor on feeding. Thus, AMPK is required for GI neuron activity by controlling the expression of the anti-oxidant enzyme Txn2. However, the glucose sensing capacity of VMN GI neurons is not required for the normal counterregulatory response to hypoglycemia. Instead, it may represent a fail-safe system in case of impaired hypoglycemia sensing by peripherally located gluco-detection systems that are connected to the VMN.


2003 ◽  
Vol 371 (3) ◽  
pp. 761-774 ◽  
Author(s):  
Gabriela da SILVA XAVIER ◽  
Isabelle LECLERC ◽  
Aniko VARADI ◽  
Takashi TSUBOI ◽  
S. Kelly MOULE ◽  
...  

AMP-activated protein kinase (AMPK) has recently been implicated in the control of preproinsulin gene expression in pancreatic islet β-cells [da Silva Xavier, Leclerc, Salt, Doiron, Hardie, Kahn and Rutter (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4023–4028]. Using pharmacological and molecular strategies to regulate AMPK activity in rat islets and clonal MIN6 β-cells, we show here that the effects of AMPK are exerted largely upstream of insulin release. Thus forced increases in AMPK activity achieved pharmacologically with 5-amino-4-imidazolecarboxamide riboside (AICAR), or by adenoviral overexpression of a truncated, constitutively active form of the enzyme (AMPKα1.T172D), blocked glucose-stimulated insulin secretion. In MIN6 cells, activation of AMPK suppressed glucose metabolism, as assessed by changes in total, cytosolic or mitochondrial [ATP] and NAD(P)H, and reduced increases in intracellular [Ca2+] caused by either glucose or tolbutamide. By contrast, inactivation of AMPK by expression of a dominant-negative form of the enzyme mutated in the catalytic site (AMPKα1.D157A) did not affect glucose-stimulated increases in [ATP], NAD(P)H or intracellular [Ca2+], but led to the unregulated release of insulin. These results indicate that inhibition of AMPK by glucose is essential for the activation of insulin secretion by the sugar, and may contribute to the transcriptional stimulation of the preproinsulin gene. Modulation of AMPK activity in the β-cell may thus represent a novel therapeutic strategy for the treatment of type 2 diabetes mellitus.


2007 ◽  
Vol 192 (3) ◽  
pp. 605-614 ◽  
Author(s):  
Fang Cai ◽  
Armen V Gyulkhandanyan ◽  
Michael B Wheeler ◽  
Denise D Belsham

The mammalian hypothalamus comprises an array of phenotypically distinct cell types that interpret peripheral signals of energy status and, in turn, elicits an appropriate response to maintain energy homeostasis. We used a clonal representative hypothalamic cell model expressing proopiomelanocortin (POMC; N-43/5) to study changes in AMP-activated protein kinase (AMPK) activity and glucose responsiveness. We have demonstrated the presence of cellular machinery responsible for glucose sensing in the cell line, including glucokinase, glucose transporters, and appropriate ion channels. ATP-sensitive potassium channels were functional and responded to glucose. The N-43/5 POMC neurons may therefore be an appropriate cell model to study glucose-sensing mechanisms in the hypothalamus. In N-43/5 POMC neurons, increasing glucose concentrations decreased phospho-AMPK activity. As a relevant downstream effect, we found that POMC transcription increased with 2.8 and 16.7 mM glucose. Upon addition of leptin, with either no glucose or with 5 mM glucose, we found that leptin decreased AMPK activity in N-43/5 POMC neurons, but had no significant effect at 25 mM glucose, whereas insulin decreased AMPK activity at only 5 mM glucose. These results demonstrate that individual hypothalamic neuronal cell types, such as the POMC neuron, can have distinct responses to peripheral signals that relay energy status to the brain, and will therefore be activated uniquely to control neuroendocrine function.


2004 ◽  
Vol 287 (4) ◽  
pp. E739-E743 ◽  
Author(s):  
Burton F. Holmes ◽  
David B. Lang ◽  
Morris J. Birnbaum ◽  
James Mu ◽  
G. Lynis Dohm

An acute bout of exercise increases muscle GLUT4 mRNA in mice, and denervation decreases GLUT4 mRNA. AMP-activated protein kinase (AMPK) activity in skeletal muscle is also increased by exercise, and GLUT4 mRNA is increased in mouse skeletal muscle after treatment with AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside(AICAR). These findings suggest that AMPK activation might be responsible for the increase in GLUT4 mRNA expression in response to exercise. To investigate the role of AMPK in GLUT4 regulation in response to exercise and denervation, transgenic mice with a mutated AMPK α-subunit (dominant negative; AMPK-DN) were studied. GLUT4 did not increase in AMPK-DN mice that were treated with AICAR, demonstrating that muscle AMPK is inactive. Exercise (two 3-h bouts of treadmill running separated by 1 h of rest) increased GLUT4 mRNA in both wild-type and AMPK-DN mice. Likewise, denervation decreased GLUT4 mRNA in both wild-type and AMPK-DN mice. GLUT4 mRNA was also increased by AICAR treatment in both the innervated and denervated muscles. These data demonstrate that AMPK is not required for the response of GLUT4 mRNA to exercise and denervation.


2000 ◽  
Vol 20 (18) ◽  
pp. 6704-6711 ◽  
Author(s):  
Angela Woods ◽  
Dalila Azzout-Marniche ◽  
Marc Foretz ◽  
Silvie C. Stein ◽  
Patricia Lemarchand ◽  
...  

ABSTRACT In the liver, glucose induces the expression of a number of genes involved in glucose and lipid metabolism, e.g., those encoding L-type pyruvate kinase and fatty acid synthase. Recent evidence has indicated a role for the AMP-activated protein kinase (AMPK) in the inhibition of glucose-activated gene expression in hepatocytes. It remains unclear, however, whether AMPK is involved in the glucose induction of these genes. In order to study further the role of AMPK in regulating gene expression, we have generated two mutant forms of AMPK. One of these (α1312) acts as a constitutively active kinase, while the other (α1DN) acts as a dominant negative inhibitor of endogenous AMPK. We have used adenovirus-mediated gene transfer to express these mutants in primary rat hepatocytes in culture in order to determine their effect on AMPK activity and the transcription of glucose-activated genes. Expression of α1312 increased AMPK activity in hepatocytes and blocked completely the induction of a number of glucose-activated genes in response to 25 mM glucose. This effect is similar to that observed following activation of AMPK by 5-amino-imidazolecarboxamide riboside. Expression of α1DN markedly inhibited both basal and stimulated activity of endogenous AMPK but had no effect on the transcription of glucose-activated genes. Our results suggest that AMPK is involved in the inhibition of glucose-activated gene expression but not in the induction pathway. This study demonstrates that the two mutants we have described will provide valuable tools for studying the wider physiological role of AMPK.


2003 ◽  
Vol 284 (5) ◽  
pp. C1297-C1308 ◽  
Author(s):  
Kenneth R. Hallows ◽  
Gary P. Kobinger ◽  
James M. Wilson ◽  
Lee A. Witters ◽  
J. Kevin Foskett

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated, ATP-gated Cl− channel and cellular conductance regulator, but the detailed mechanisms of CFTR regulation and its regulation of other transport proteins remain obscure. We previously identified the metabolic sensor AMP-activated protein kinase (AMPK) as a novel protein interacting with CFTR and found that AMPK phosphorylated CFTR and inhibited CFTR-dependent whole cell conductances when coexpressed with CFTR in Xenopus oocytes. To address the physiological relevance of the CFTR-AMPK interaction, we have now studied polarized epithelia and have evaluated the localization of endogenous AMPK and CFTR and measured CFTR activity with modulation of AMPK activity. By immunofluorescent imaging, AMPK and CFTR share an overlapping apical distribution in several rat epithelial tissues, including nasopharynx, submandibular gland, pancreas, and ileum. CFTR-dependent short-circuit currents ( Isc ) were measured in polarized T84 cells grown on permeable supports, and several independent methods were used to modulate endogenous AMPK activity. Activation of endogenous AMPK with the cell-permeant adenosine analog 5-amino-4-imidazolecarboxamide-1-β-d-ribofuranoside (AICAR) inhibited forskolin-stimulated CFTR-dependent I sc in nonpermeabilized monolayers and monolayers with nystatin permeabilization of the basolateral membrane. Raising intracellular AMP concentration in monolayers with basolateral membranes permeabilized with α-toxin also inhibited CFTR, an effect that was unrelated to adenosine receptors. Finally, overexpression of a kinase-dead mutant AMPK-α1 subunit (α1-K45R) enhanced forskolin-stimulated I sc in polarized T84 monolayers, consistent with a dominant-negative reduction in the inhibition of CFTR by endogenous AMPK. These results indicate that AMPK plays a physiological role in modulating CFTR activity in polarized epithelia and suggest a novel paradigm for the coupling of ion transport to cellular metabolism.


2010 ◽  
Vol 57 (2) ◽  
pp. 141-152 ◽  
Author(s):  
Yukiko OKAZAKI ◽  
Kazuhiro ETO ◽  
Tokuyuki YAMASHITA ◽  
Masayuki OKAMOTO ◽  
Mitsuru OHSUGI ◽  
...  

2009 ◽  
Vol 297 (1) ◽  
pp. C94-C101 ◽  
Author(s):  
J Darwin King ◽  
Adam C. Fitch ◽  
Jeffrey K. Lee ◽  
Jill E. McCane ◽  
Don-On Daniel Mak ◽  
...  

The metabolic sensor AMP-activated protein kinase (AMPK) has emerged as an important link between cellular metabolic status and ion transport activity. We previously found that AMPK binds to and phosphorylates CFTR in vitro and inhibits PKA-dependent stimulation of CFTR channel gating in Calu-3 bronchial serous gland epithelial cells. To further characterize the mechanism of AMPK-dependent regulation of CFTR, whole cell patch-clamp measurements were performed with PKA activation in Calu-3 cells expressing either constitutively active or dominant-negative AMPK mutants (AMPK-CA or AMPK-DN). Baseline CFTR conductance in cells expressing AMPK-DN was substantially greater than controls, suggesting that tonic AMPK activity in these cells inhibits CFTR under basal conditions. Although baseline CFTR conductance in cells expressing AMPK-CA was comparable to that of controls, PKA stimulation of CFTR was completely blocked in AMPK-CA-expressing cells, suggesting that AMPK activation renders CFTR resistant to PKA activation in vivo. Phosphorylation studies of CFTR in human embryonic kidney-293 cells using tetracycline-inducible expression of AMPK-DN demonstrated AMPK-dependent phosphorylation of CFTR in vivo. However, AMPK activity modulation had no effect on CFTR in vivo phosphorylation in response to graded doses of PKA or PKC agonists. Thus, AMPK-dependent CFTR phosphorylation renders the channel resistant to activation by PKA and PKC without preventing phosphorylation by these kinases. We found that Ser768, a CFTR R domain residue considered to be an inhibitory PKA site, is the dominant site of AMPK phosphorylation in vitro. Ser-to-Ala mutation at this site enhanced baseline CFTR activity and rendered CFTR resistant to inhibition by AMPK, suggesting that AMPK phosphorylation at Ser768 is required for its inhibition of CFTR. In summary, our findings indicate that AMPK-dependent phosphorylation of CFTR inhibits CFTR activation by PKA, thereby tuning the PKA-responsiveness of CFTR to metabolic and other stresses in the cell.


Endocrinology ◽  
2007 ◽  
Vol 148 (3) ◽  
pp. 1367-1375 ◽  
Author(s):  
Thierry Alquier ◽  
Junji Kawashima ◽  
Youki Tsuji ◽  
Barbara B. Kahn

Antecedent hypoglycemia blunts counterregulatory responses that normally restore glycemia, a phenomenon known as hypoglycemia-associated autonomic failure (HAAF). The mechanisms leading to impaired counterregulatory responses are largely unknown. Hypothalamic AMP-activated protein kinase (AMPK) acts as a glucose sensor. To determine whether failure to activate AMPK could be involved in the etiology of HAAF, we developed a model of HAAF using repetitive intracerebroventricular (icv) injection of 2-deoxy-d-glucose (2DG) resulting in transient neuroglucopenia in normal rats. Ten minutes after a single icv injection of 2DG, both α1- and α2-AMPK activities were increased 30–50% in arcuate and ventromedial/dorsomedial hypothalamus but not in other hypothalamic regions, hindbrain, or cortex. Increased AMPK activity persisted in arcuate hypothalamus at 60 min after 2DG injection when serum glucagon and corticosterone levels were increased 2.5- to 3.4-fold. When 2DG was injected icv daily for 4 d, hypothalamic α1- and α2-AMPK responses were markedly blunted in arcuate hypothalamus, and α1-AMPK was also blunted in mediobasal hypothalamus 10 min after 2DG on d 4. Both AMPK isoforms were activated normally in arcuate hypothalamus at 60 min. Counterregulatory hormone responses were impaired by recurrent neuroglucopenia and were partially restored by icv injection of 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, an AMPK activator, before 2DG. Glycogen content increased 2-fold in hypothalamus after recurrent neuroglucopenia, suggesting that glycogen supercompensation could be involved in down-regulating the AMPK glucose-sensing pathway in HAAF. Thus, activation of hypothalamic AMPK may be important for the full counterregulatory hormone response to neuroglucopenia. Furthermore, impaired or delayed AMPK activation in specific hypothalamic regions may play a critical role in the etiology of HAAF.


2009 ◽  
Vol 296 (6) ◽  
pp. R1702-R1708 ◽  
Author(s):  
X. Fan ◽  
Y. Ding ◽  
S. Brown ◽  
L. Zhou ◽  
M. Shaw ◽  
...  

In nondiabetic rodents, AMP-activated protein kinase (AMPK) plays a role in the glucose-sensing mechanism used by the ventromedial hypothalamus (VMH), a key brain region involved in the detection of hypoglycemia. However, AMPK is regulated by both hyper- and hypoglycemia, so whether AMPK plays a similar role in type 1 diabetes (T1DM) is unknown. To address this issue, we used four groups of chronically catheterized male diabetic BB rats, a rodent model of autoimmune T1DM with established insulin—requiring diabetes (40 ± 4 pmol/l basal c-peptide). Two groups were subjected to 3 days of recurrent hypoglycemia (RH), while the other two groups were kept hyperglycemic [chronic hyperglycemia (CH)]. All groups subsequently underwent hyperinsulinemic hypoglycemic clamp studies on day 4 in conjunction with VMH microinjection with either saline (control) or AICAR (5-aminoimidazole-4-carboxamide) to activate AMPK. Compared with controls, local VMH application of AICAR during hypoglycemia amplified both glucagon [means ± SE, area under the curve over time (AUC/ t) 144 ± 43 vs. 50 ± 11 ng·l−1·min−1; P < 0.05] and epinephrine [4.27 ± 0.96 vs. 1.06 ± 0.26 nmol·l−1·min−1; P < 0.05] responses in RH-BB rats, and amplified the glucagon [151 ± 22 vs. 85 ± 22 ng·l−1·min−1; P < 0.05] response in CH-BB rats. We conclude that VMH AMPK also plays a role in glucose-sensing during hypoglycemia in a rodent model of T1DM. Moreover, our data suggest that it may be possible to partially restore the hypoglycemia-specific glucagon secretory defect characteristic of T1DM through manipulation of VMH AMPK.


Sign in / Sign up

Export Citation Format

Share Document