Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells

2003 ◽  
Vol 284 (5) ◽  
pp. C1297-C1308 ◽  
Author(s):  
Kenneth R. Hallows ◽  
Gary P. Kobinger ◽  
James M. Wilson ◽  
Lee A. Witters ◽  
J. Kevin Foskett

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated, ATP-gated Cl− channel and cellular conductance regulator, but the detailed mechanisms of CFTR regulation and its regulation of other transport proteins remain obscure. We previously identified the metabolic sensor AMP-activated protein kinase (AMPK) as a novel protein interacting with CFTR and found that AMPK phosphorylated CFTR and inhibited CFTR-dependent whole cell conductances when coexpressed with CFTR in Xenopus oocytes. To address the physiological relevance of the CFTR-AMPK interaction, we have now studied polarized epithelia and have evaluated the localization of endogenous AMPK and CFTR and measured CFTR activity with modulation of AMPK activity. By immunofluorescent imaging, AMPK and CFTR share an overlapping apical distribution in several rat epithelial tissues, including nasopharynx, submandibular gland, pancreas, and ileum. CFTR-dependent short-circuit currents ( Isc ) were measured in polarized T84 cells grown on permeable supports, and several independent methods were used to modulate endogenous AMPK activity. Activation of endogenous AMPK with the cell-permeant adenosine analog 5-amino-4-imidazolecarboxamide-1-β-d-ribofuranoside (AICAR) inhibited forskolin-stimulated CFTR-dependent I sc in nonpermeabilized monolayers and monolayers with nystatin permeabilization of the basolateral membrane. Raising intracellular AMP concentration in monolayers with basolateral membranes permeabilized with α-toxin also inhibited CFTR, an effect that was unrelated to adenosine receptors. Finally, overexpression of a kinase-dead mutant AMPK-α1 subunit (α1-K45R) enhanced forskolin-stimulated I sc in polarized T84 monolayers, consistent with a dominant-negative reduction in the inhibition of CFTR by endogenous AMPK. These results indicate that AMPK plays a physiological role in modulating CFTR activity in polarized epithelia and suggest a novel paradigm for the coupling of ion transport to cellular metabolism.

2000 ◽  
Vol 20 (18) ◽  
pp. 6704-6711 ◽  
Author(s):  
Angela Woods ◽  
Dalila Azzout-Marniche ◽  
Marc Foretz ◽  
Silvie C. Stein ◽  
Patricia Lemarchand ◽  
...  

ABSTRACT In the liver, glucose induces the expression of a number of genes involved in glucose and lipid metabolism, e.g., those encoding L-type pyruvate kinase and fatty acid synthase. Recent evidence has indicated a role for the AMP-activated protein kinase (AMPK) in the inhibition of glucose-activated gene expression in hepatocytes. It remains unclear, however, whether AMPK is involved in the glucose induction of these genes. In order to study further the role of AMPK in regulating gene expression, we have generated two mutant forms of AMPK. One of these (α1312) acts as a constitutively active kinase, while the other (α1DN) acts as a dominant negative inhibitor of endogenous AMPK. We have used adenovirus-mediated gene transfer to express these mutants in primary rat hepatocytes in culture in order to determine their effect on AMPK activity and the transcription of glucose-activated genes. Expression of α1312 increased AMPK activity in hepatocytes and blocked completely the induction of a number of glucose-activated genes in response to 25 mM glucose. This effect is similar to that observed following activation of AMPK by 5-amino-imidazolecarboxamide riboside. Expression of α1DN markedly inhibited both basal and stimulated activity of endogenous AMPK but had no effect on the transcription of glucose-activated genes. Our results suggest that AMPK is involved in the inhibition of glucose-activated gene expression but not in the induction pathway. This study demonstrates that the two mutants we have described will provide valuable tools for studying the wider physiological role of AMPK.


2009 ◽  
Vol 135 (1) ◽  
pp. 43-58 ◽  
Author(s):  
Kazi Mirajul Hoque ◽  
Owen M. Woodward ◽  
Damian B. van Rossum ◽  
Nicholas C. Zachos ◽  
Linxi Chen ◽  
...  

Intestinal Cl− secretion is stimulated by cyclic AMP (cAMP) and intracellular calcium ([Ca2+]i). Recent studies show that protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac) are downstream targets of cAMP. Therefore, we tested whether both PKA and Epac are involved in forskolin (FSK)/cAMP-stimulated Cl− secretion. Human intestinal T84 cells and mouse small intestine were used for short circuit current (Isc) measurement in response to agonist-stimulated Cl− secretion. FSK-stimulated Cl− secretion was completely inhibited by the additive effects of the PKA inhibitor, H89 (1 µM), and the [Ca2+]i chelator, 1,2-bis-(o-aminophenoxy)-ethane-N,N,N’,N’-tetraacetic acid, tetraacetoxymethyl ester (BAPTA-AM; 25 µM). Both FSK and the Epac activator 8-pCPT-2’-O-Me-cAMP (50 µM) elevated [Ca2+]i, activated Ras-related protein 2, and induced Cl− secretion in intact or basolateral membrane–permeabilized T84 cells and mouse ileal sheets. The effects of 8-pCPT-2’-O-Me-cAMP were completely abolished by BAPTA-AM, but not by H89. In contrast, T84 cells with silenced Epac1 had a reduced Isc response to FSK, and this response was completely inhibited by H89, but not by the phospholipase C inhibitor U73122 or BAPTA-AM. The stimulatory effect of 8-pCPT-2’-O-Me-cAMP on Cl− secretion was not abolished by cystic fibrosis transmembrane conductance (CFTR) inhibitor 172 or glibenclamide, suggesting that CFTR channels are not involved. This was confirmed by lack of effect of 8-pCPT-2’-O-Me-cAMP on whole cell patch clamp recordings of CFTR currents in Chinese hamster ovary cells transiently expressing the human CFTR channel. Furthermore, biophysical characterization of the Epac1-dependent Cl− conductance of T84 cells mounted in Ussing chambers suggested that this conductance was hyperpolarization activated, inwardly rectifying, and displayed a Cl−>Br−>I− permeability sequence. These results led us to conclude that the Epac-Rap-PLC-[Ca2+]i signaling pathway is involved in cAMP-stimulated Cl− secretion, which is carried by a novel, previously undescribed Cl− channel.


2009 ◽  
Vol 297 (1) ◽  
pp. C94-C101 ◽  
Author(s):  
J Darwin King ◽  
Adam C. Fitch ◽  
Jeffrey K. Lee ◽  
Jill E. McCane ◽  
Don-On Daniel Mak ◽  
...  

The metabolic sensor AMP-activated protein kinase (AMPK) has emerged as an important link between cellular metabolic status and ion transport activity. We previously found that AMPK binds to and phosphorylates CFTR in vitro and inhibits PKA-dependent stimulation of CFTR channel gating in Calu-3 bronchial serous gland epithelial cells. To further characterize the mechanism of AMPK-dependent regulation of CFTR, whole cell patch-clamp measurements were performed with PKA activation in Calu-3 cells expressing either constitutively active or dominant-negative AMPK mutants (AMPK-CA or AMPK-DN). Baseline CFTR conductance in cells expressing AMPK-DN was substantially greater than controls, suggesting that tonic AMPK activity in these cells inhibits CFTR under basal conditions. Although baseline CFTR conductance in cells expressing AMPK-CA was comparable to that of controls, PKA stimulation of CFTR was completely blocked in AMPK-CA-expressing cells, suggesting that AMPK activation renders CFTR resistant to PKA activation in vivo. Phosphorylation studies of CFTR in human embryonic kidney-293 cells using tetracycline-inducible expression of AMPK-DN demonstrated AMPK-dependent phosphorylation of CFTR in vivo. However, AMPK activity modulation had no effect on CFTR in vivo phosphorylation in response to graded doses of PKA or PKC agonists. Thus, AMPK-dependent CFTR phosphorylation renders the channel resistant to activation by PKA and PKC without preventing phosphorylation by these kinases. We found that Ser768, a CFTR R domain residue considered to be an inhibitory PKA site, is the dominant site of AMPK phosphorylation in vitro. Ser-to-Ala mutation at this site enhanced baseline CFTR activity and rendered CFTR resistant to inhibition by AMPK, suggesting that AMPK phosphorylation at Ser768 is required for its inhibition of CFTR. In summary, our findings indicate that AMPK-dependent phosphorylation of CFTR inhibits CFTR activation by PKA, thereby tuning the PKA-responsiveness of CFTR to metabolic and other stresses in the cell.


2003 ◽  
Vol 285 (5) ◽  
pp. G850-G860 ◽  
Author(s):  
John Walker ◽  
Humberto B. Jijon ◽  
Thomas Churchill ◽  
Marianne Kulka ◽  
Karen L. Madsen

AMP-activated protein kinase (AMPK) is activated in response to fluctuations in cellular energy status caused by oxidative stress. One of its targets is the cystic fibrosis transmembrane conductance regulator (CFTR), which is the predominant Cl-secretory channel in colonic tissue. The aim of this study was to determine the role of AMPK in the modulation of colonic chloride secretion under conditions of oxidative stress and chronic inflammation. Chloride secretion and AMPK activity were examined in colonic tissue from adult IL-10-deficient and wild-type 129 Sv/Ev mice in the presence and absence of pharmacological AMPK inhibitors and activators, respectively. Apical levels of CFTR were measured in brush-border membrane vesicles. Cell culture studies in human colonic T84 monolayers examined the effect of hydrogen peroxide and pharmacological activation of AMPK on forskolin-stimulated chloride secretion. Inflamed colons from IL-10-deficient mice exhibited hyporesponsiveness to forskolin stimulation in association with reductions in surface CFTR expression and increased AMPK activity. Inhibition of AMPK restored tissue responsiveness to forskolin, whereas stimulation of AMPK with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) induced tissue hyporesponsivness in wild-type mice. T84 cells exposed to hydrogen peroxide demonstrated a time-dependent increase in AMPK activity and reduction of forskolin-stimulated chloride secretion. Inhibition of AMPK prevented the reduction in chloride secretion. Treatment of cells with the AMPK activator, AICAR, resulted in a decreased chloride secretion. In conclusion, AMPK activation is linked with reductions in cAMP-mediated epithelial chloride flux and may be a contributing factor to the hyporesponsiveness seen under conditions of chronic inflammation.


2003 ◽  
Vol 371 (3) ◽  
pp. 761-774 ◽  
Author(s):  
Gabriela da SILVA XAVIER ◽  
Isabelle LECLERC ◽  
Aniko VARADI ◽  
Takashi TSUBOI ◽  
S. Kelly MOULE ◽  
...  

AMP-activated protein kinase (AMPK) has recently been implicated in the control of preproinsulin gene expression in pancreatic islet β-cells [da Silva Xavier, Leclerc, Salt, Doiron, Hardie, Kahn and Rutter (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4023–4028]. Using pharmacological and molecular strategies to regulate AMPK activity in rat islets and clonal MIN6 β-cells, we show here that the effects of AMPK are exerted largely upstream of insulin release. Thus forced increases in AMPK activity achieved pharmacologically with 5-amino-4-imidazolecarboxamide riboside (AICAR), or by adenoviral overexpression of a truncated, constitutively active form of the enzyme (AMPKα1.T172D), blocked glucose-stimulated insulin secretion. In MIN6 cells, activation of AMPK suppressed glucose metabolism, as assessed by changes in total, cytosolic or mitochondrial [ATP] and NAD(P)H, and reduced increases in intracellular [Ca2+] caused by either glucose or tolbutamide. By contrast, inactivation of AMPK by expression of a dominant-negative form of the enzyme mutated in the catalytic site (AMPKα1.D157A) did not affect glucose-stimulated increases in [ATP], NAD(P)H or intracellular [Ca2+], but led to the unregulated release of insulin. These results indicate that inhibition of AMPK by glucose is essential for the activation of insulin secretion by the sugar, and may contribute to the transcriptional stimulation of the preproinsulin gene. Modulation of AMPK activity in the β-cell may thus represent a novel therapeutic strategy for the treatment of type 2 diabetes mellitus.


2009 ◽  
Vol 296 (2) ◽  
pp. C285-C295 ◽  
Author(s):  
Hélène Klein ◽  
Line Garneau ◽  
Nguyen Thu Ngan Trinh ◽  
Anik Privé ◽  
François Dionne ◽  
...  

The vectorial transport of ions and water across epithelial cells depends to a large extent on the coordination of the apical and basolateral ion fluxes with energy supply. In this work we provide the first evidence for a regulation by the 5′-AMP-activated protein kinase (AMPK) of the calcium-activated potassium channel KCa3.1 expressed at the basolateral membrane of a large variety of epithelial cells. Inside-out patch-clamp experiments performed on human embryonic kidney (HEK) cells stably transfected with KCa3.1 first revealed a decrease in KCa3.1 activity following the internal addition of AMP at a fixed ATP concentration. This effect was dose dependent with half inhibition at 140 μM AMP in 1 mM ATP. Evidence for an interaction between the COOH-terminal region of KCa3.1 and the γ1-subunit of AMPK was next obtained by two-hybrid screening and pull-down experiments. Our two-hybrid analysis confirmed in addition that the amino acids extending from Asp380 to Ala400 in COOH-terminal were essential for the interaction AMPK-γ1/KCa3.1. Inside-out experiments on cells coexpressing KCa3.1 with the dominant negative AMPK-γ1-R299G mutant showed a reduced sensitivity of KCa3.1 to AMP, arguing for a functional link between KCa3.1 and the γ1-subunit of AMPK. More importantly, coimmunoprecipitation experiments carried out on bronchial epithelial NuLi cells provided direct evidence for the formation of a KCa3.1/AMPK-γ1 complex at endogenous AMPK and KCa3.1 expression levels. Finally, treating NuLi monolayers with the membrane permeant AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) caused a significant decrease of the KCa3.1-mediated short-circuit currents, an effect reversible by coincubation with the AMPK inhibitor Compound C. These observations argue for a regulation of KCa3.1 by AMPK in a functional epithelium through protein/protein interactions involving the γ1-subunit of AMPK.


2003 ◽  
Vol 285 (3) ◽  
pp. E629-E636 ◽  
Author(s):  
David L. Coven ◽  
Xiaoyue Hu ◽  
Lin Cong ◽  
Raynald Bergeron ◽  
Gerald I. Shulman ◽  
...  

AMP-activated protein kinase (AMPK) is emerging as a key signaling pathway that modulates cellular metabolic processes. In skeletal muscle, AMPK is activated during exercise. Increased myocardial substrate metabolism during exercise could be explained by AMPK activation. Although AMPK is known to be activated during myocardial ischemia, it remains uncertain whether AMPK is activated in response to the physiological increases in cardiac work associated with exercise. Therefore, we evaluated cardiac AMPK activity in rats at rest and after 10 min of treadmill running at moderate (15% grade, 16 m/min) or high (15% grade, 32 m/min) intensity. Total AMPK activity in the heart increased in proportion to exercise intensity ( P < 0.05). AMPK activity associated with the α2-catalytic subunit increased 2.8 ± 0.4-fold ( P < 0.02 vs. rest) and 4.5 ± 0.6-fold ( P < 0.001 vs. rest) with moderate- and high-intensity exercise, respectively. AMPK activity associated with the α1-subunit increased to a lesser extent. Phosphorylation of the Thr172-regulatory site on AMPK α-catalytic subunits increased during exercise ( P < 0.001). There was no increase in Akt phosphorylation during exercise. The changes in AMPK activity during exercise were associated with physiological AMPK effects (GLUT4 translocation to the sarcolemma and ACC phosphorylation). Thus cardiac AMPK activity increases progressively with exercise intensity, supporting the hypothesis that AMPK has a physiological role in the heart.


2007 ◽  
Vol 192 (3) ◽  
pp. 605-614 ◽  
Author(s):  
Fang Cai ◽  
Armen V Gyulkhandanyan ◽  
Michael B Wheeler ◽  
Denise D Belsham

The mammalian hypothalamus comprises an array of phenotypically distinct cell types that interpret peripheral signals of energy status and, in turn, elicits an appropriate response to maintain energy homeostasis. We used a clonal representative hypothalamic cell model expressing proopiomelanocortin (POMC; N-43/5) to study changes in AMP-activated protein kinase (AMPK) activity and glucose responsiveness. We have demonstrated the presence of cellular machinery responsible for glucose sensing in the cell line, including glucokinase, glucose transporters, and appropriate ion channels. ATP-sensitive potassium channels were functional and responded to glucose. The N-43/5 POMC neurons may therefore be an appropriate cell model to study glucose-sensing mechanisms in the hypothalamus. In N-43/5 POMC neurons, increasing glucose concentrations decreased phospho-AMPK activity. As a relevant downstream effect, we found that POMC transcription increased with 2.8 and 16.7 mM glucose. Upon addition of leptin, with either no glucose or with 5 mM glucose, we found that leptin decreased AMPK activity in N-43/5 POMC neurons, but had no significant effect at 25 mM glucose, whereas insulin decreased AMPK activity at only 5 mM glucose. These results demonstrate that individual hypothalamic neuronal cell types, such as the POMC neuron, can have distinct responses to peripheral signals that relay energy status to the brain, and will therefore be activated uniquely to control neuroendocrine function.


2007 ◽  
Vol 403 (3) ◽  
pp. 473-481 ◽  
Author(s):  
Ho-Jin Koh ◽  
Michael F. Hirshman ◽  
Huamei He ◽  
Yangfeng Li ◽  
Yasuko Manabe ◽  
...  

Exercise increases AMPK (AMP-activated protein kinase) activity in human and rat adipocytes, but the underlying molecular mechanisms and functional consequences of this activation are not known. Since adrenaline (epinephrine) concentrations increase with exercise, in the present study we hypothesized that adrenaline activates AMPK in adipocytes. We show that a single bout of exercise increases AMPKα1 and α2 activities and ACC (acetyl-CoA carboxylase) Ser79 phosphorylation in rat adipocytes. Similarly to exercise, adrenaline treatment in vivo increased AMPK activities and ACC phosphorylation. Pre-treatment of rats with the β-blocker propranolol fully blocked exercise-induced AMPK activation. Increased AMPK activity with exercise and adrenaline treatment in vivo was accompanied by an increased AMP/ATP ratio. Adrenaline incubation of isolated adipocytes also increased the AMP/ATP ratio and AMPK activities, an effect blocked by propranolol. Adrenaline incubation increased lipolysis in isolated adipocytes, and Compound C, an AMPK inhibitor, attenuated this effect. Finally, a potential role for AMPK in the decreased adiposity associated with chronic exercise was suggested by marked increases in AMPKα1 and α2 activities in adipocytes from rats trained for 6 weeks. In conclusion, both acute and chronic exercise are significant regulators of AMPK activity in rat adipocytes. Our findings suggest that adrenaline plays a critical role in exercise-stimulated AMPKα1 and α2 activities in adipocytes, and that AMPK can function in the regulation of lipolysis.


2004 ◽  
Vol 287 (4) ◽  
pp. E739-E743 ◽  
Author(s):  
Burton F. Holmes ◽  
David B. Lang ◽  
Morris J. Birnbaum ◽  
James Mu ◽  
G. Lynis Dohm

An acute bout of exercise increases muscle GLUT4 mRNA in mice, and denervation decreases GLUT4 mRNA. AMP-activated protein kinase (AMPK) activity in skeletal muscle is also increased by exercise, and GLUT4 mRNA is increased in mouse skeletal muscle after treatment with AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside(AICAR). These findings suggest that AMPK activation might be responsible for the increase in GLUT4 mRNA expression in response to exercise. To investigate the role of AMPK in GLUT4 regulation in response to exercise and denervation, transgenic mice with a mutated AMPK α-subunit (dominant negative; AMPK-DN) were studied. GLUT4 did not increase in AMPK-DN mice that were treated with AICAR, demonstrating that muscle AMPK is inactive. Exercise (two 3-h bouts of treadmill running separated by 1 h of rest) increased GLUT4 mRNA in both wild-type and AMPK-DN mice. Likewise, denervation decreased GLUT4 mRNA in both wild-type and AMPK-DN mice. GLUT4 mRNA was also increased by AICAR treatment in both the innervated and denervated muscles. These data demonstrate that AMPK is not required for the response of GLUT4 mRNA to exercise and denervation.


Sign in / Sign up

Export Citation Format

Share Document