scholarly journals Peptidylarginine deiminase inhibition prevents diabetes development in NOD mice

2020 ◽  
Author(s):  
Ada Admin ◽  
Fernanda M. C. Sodré ◽  
Samal Bissenova ◽  
Ylke Bruggeman ◽  
Ronak Tilvawala ◽  
...  

Protein citrullination plays a role in several autoimmune diseases. Its involvement in murine and human type 1 diabetes has recently been recognized through the discovery of antibodies and T-cell reactivity against citrullinated peptides. In the current study, we demonstrate that systemic inhibition of peptidylarginine deiminases (PADs), the enzymes mediating citrullination, through BB-Cl-amidine treatment, prevents diabetes development in NOD mice. This prevention was associated with reduced levels of citrullination in the pancreas, decreased circulating autoantibody titers against citrullinated GRP78 and reduced spontaneous NETosis of bone marrow-derived neutrophils. Moreover, BB-Cl-amidine treatment induced a shift from Th1 to Th2 cytokines in the serum and an increase in the frequency of regulatory T cells in the blood and spleen. In the pancreas, BB-Cl-amidine treatment preserved insulin production and was associated with a less destructive immune infiltrate, characterized by reduced frequencies of effector memory CD4<sup>+</sup> T cells and a modest reduction in the frequency of IFNγ-producing CD4<sup>+</sup> and CD8<sup>+</sup> T cells. Our results point to a role of citrullination in the pathogenesis of autoimmune diabetes, with PAD inhibition leading to disease prevention through modulation of immune pathways. These findings provide insight in the potential of PAD inhibition for treating autoimmune diseases like type 1 diabetes.

2020 ◽  
Author(s):  
Ada Admin ◽  
Fernanda M. C. Sodré ◽  
Samal Bissenova ◽  
Ylke Bruggeman ◽  
Ronak Tilvawala ◽  
...  

Protein citrullination plays a role in several autoimmune diseases. Its involvement in murine and human type 1 diabetes has recently been recognized through the discovery of antibodies and T-cell reactivity against citrullinated peptides. In the current study, we demonstrate that systemic inhibition of peptidylarginine deiminases (PADs), the enzymes mediating citrullination, through BB-Cl-amidine treatment, prevents diabetes development in NOD mice. This prevention was associated with reduced levels of citrullination in the pancreas, decreased circulating autoantibody titers against citrullinated GRP78 and reduced spontaneous NETosis of bone marrow-derived neutrophils. Moreover, BB-Cl-amidine treatment induced a shift from Th1 to Th2 cytokines in the serum and an increase in the frequency of regulatory T cells in the blood and spleen. In the pancreas, BB-Cl-amidine treatment preserved insulin production and was associated with a less destructive immune infiltrate, characterized by reduced frequencies of effector memory CD4<sup>+</sup> T cells and a modest reduction in the frequency of IFNγ-producing CD4<sup>+</sup> and CD8<sup>+</sup> T cells. Our results point to a role of citrullination in the pathogenesis of autoimmune diabetes, with PAD inhibition leading to disease prevention through modulation of immune pathways. These findings provide insight in the potential of PAD inhibition for treating autoimmune diseases like type 1 diabetes.


2020 ◽  
Author(s):  
Heejoo Kim ◽  
Jelena Perovanovic ◽  
Arvind Shakya ◽  
Zuolian Shen ◽  
Cody N. German ◽  
...  

AbstractThe transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present, but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice, but diminished in monoclonal models specific to artificial or neoantigens. Rationally-designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels, and reduced T cell infiltration and proinflammatory cytokine expression in newly-diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.~40-word summary statement for the online JEM table of contents and alertsKim and colleagues show that OCA-B in T cells is essential for the generation of type-1 diabetes. OCA-B loss leaves the pancreatic lymph nodes largely undisturbed, but associates autoreactive CD4+ T cells in the pancreas with anergy while deleting potentially autoreactive CD8+ T cells.SummaryKim et al. show that loss or inhibition of OCA-B in T cells protects mice from type-1 diabetes.


2003 ◽  
Vol 198 (7) ◽  
pp. 1103-1106 ◽  
Author(s):  
Irina Apostolou ◽  
Zhenyue Hao ◽  
Klaus Rajewsky ◽  
Harald von Boehmer

In type 1 diabetes, autoimmune T cells cause destruction of pancreatic β cells by largely unknown mechanism. Previous analyses have shown that β cell destruction is delayed but can occur in perforin-deficient nonobese diabetic (NOD) mice and that Fas-deficient NOD mice do not develop diabetes. However, because of possible pleiotropic functions of Fas, it was not clear whether the Fas receptor was an essential mediator of β cell death in type 1 diabetes. To directly test this hypothesis, we have generated a β cell–specific knockout of the Fas gene in a transgenic model of type 1 autoimmune diabetes in which CD4+ T cells with a transgenic TCR specific for influenza hemagglutinin (HA) are causing diabetes in mice that express HA under control of the rat insulin promoter. Here we show that the Fas-deficient mice develop autoimmune diabetes with slightly accelerated kinetics indicating that Fas-dependent apoptosis of β cells is a dispensable mode of cell death in this disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sefina Arif ◽  
Irma Pujol-Autonell ◽  
Yogesh Kamra ◽  
Evangeline Williams ◽  
Norkhairin Yusuf ◽  
...  

AimsRecent studies highlight the potentially important role of neoepitopes in breaking immune tolerance in type 1 diabetes. T cell reactivity to these neoepitopes has been reported, but how this response compares quantitatively and phenotypically with previous reports on native epitopes is not known. Thus, an understanding of the relationship between native and neoepitopes and their role as tolerance breakers or disease drivers in type 1 diabetes is required. We set out to compare T cell reactivity and phenotype against a panel of neo- and native islet autoantigenic epitopes to examine how this relates to stages of type 1 diabetes development.MethodsFifty-four subjects comprising patients with T1D, and autoantibody-positive unaffected family members were tested against a panel of neo- and native epitopes by ELISPOT (IFN-γ, IL-10, and IL-17). A further subset of two patients was analyzed by Single Cell Immune Profiling (RNAseq and TCR α/β) after stimulation with pools of native and neoepitope peptides.ResultsT cell responses to native and neoepitopes were present in patients with type 1 diabetes and at-risk subjects, and overall, there were no significant differences in the frequency, magnitude, or phenotype between the two sets of peptide stimuli. Single cell RNAseq on responder T cells revealed a similar profile in T1D patients stimulated with either neo- or native epitopes. A pro-inflammatory gene expression profile (TNF-α, IFN-γ) was dominant in both native and neoepitope stimulated T cells. TCRs with identical clonotypes were found in T cell responding to both native and neoepitopes.Conclusion/InterpretationThese data suggest that in peripheral blood, T cell responses to both native and neoepitopes are similar in terms of frequency and phenotype in patients with type 1 diabetes and high-risk unaffected family members. Furthermore, using a combination of transcriptomic and clonotypic analyses, albeit using a limited panel of peptides, we show that neoepitopes are comparable to native epitopes currently in use for immune-monitoring studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Huang ◽  
Qiyuan Tan ◽  
Ningwen Tai ◽  
James Alexander Pearson ◽  
Yangyang Li ◽  
...  

Type 1 diabetes is an autoimmune disease caused by T cell-mediated destruction of insulin-producing β cells. BDC2.5 T cells in BDC2.5 CD4+ T cell receptor transgenic Non-Obese Diabetic (NOD) mice (BDC2.5+ NOD mice) can abruptly invade the pancreatic islets resulting in severe insulitis that progresses rapidly but rarely leads to spontaneous diabetes. This prevention of diabetes is mediated by T regulatory (Treg) cells in these mice. In this study, we investigated the role of interleukin 10 (IL-10) in the inhibition of diabetes in BDC2.5+ NOD mice by generating Il-10-deficient BDC2.5+ NOD mice (BDC2.5+Il-10-/- NOD mice). Our results showed that BDC2.5+Il-10-/- NOD mice displayed robust and accelerated diabetes development. Il-10 deficiency in BDC2.5+ NOD mice promoted the generation of neutrophils in the bone marrow and increased the proportions of neutrophils in the periphery (blood, spleen, and islets), accompanied by altered intestinal immunity and gut microbiota composition. In vitro studies showed that the gut microbiota from BDC2.5+Il-10-/- NOD mice can expand neutrophil populations. Moreover, in vivo studies demonstrated that the depletion of endogenous gut microbiota by antibiotic treatment decreased the proportion of neutrophils. Although Il-10 deficiency in BDC2.5+ NOD mice had no obvious effects on the proportion and function of Treg cells, it affected the immune response and activation of CD4+ T cells. Moreover, the pathogenicity of CD4+ T cells was much increased, and this significantly accelerated the development of diabetes when these CD4+ T cells were transferred into immune-deficient NOD mice. Our study provides novel insights into the role of IL-10 in the modulation of neutrophils and CD4+ T cells in BDC2.5+ NOD mice, and suggests important crosstalk between gut microbiota and neutrophils in type 1 diabetes development.


2018 ◽  
Author(s):  
Marcos Iglesias ◽  
Anirudh Arun ◽  
Maria Chicco ◽  
Brandon Lam ◽  
Conover Talbot ◽  
...  

AbstractDestruction of insulin-producing β-cells by autoreactive T lymphocytes leads to the development of type 1 diabetes. Type I interferons (TI-IFN) and interleukin-10 (IL-10) have been connected with the pathophysiology of this disease; however, their interplay in the modulation of diabetogenic T cells remains unknown. We have discovered that TI-IFN cause a selective inhibition of IL-10 signaling in effector and regulatory T cells, altering their responses. This correlates with diabetes development in NOD mice, where the inhibition is also spatially localized to T cells of pancreatic and mesenteric lymph nodes. IL-10 signaling inhibition is reversible and can be restored via blockade of TI-IFN/IFN-R interaction, paralleling with the resulting delay in diabetes onset and reduced severity. Overall, we propose a novel molecular link between TI-IFN and IL-10 signaling that helps better understand the complex dynamics of autoimmune diabetes development and reveals new strategies of intervention.AbbreviationsALNaxillary lymph nodesIL-10interleukin-10MFImean fluorescence intensityMLNmesentheric lymph nodesNODnonobese diabetic micePLNpancreatic lymph nodesTI-IFNtype-1 InterferonsTmemmemory T cellsTregregulatory T cells


2010 ◽  
Vol 34 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Christian Pfleger ◽  
Guido Meierhoff ◽  
Hubert Kolb ◽  
Nanette C. Schloot

2019 ◽  
Author(s):  
Colleen M. Elso ◽  
Nicholas A. Scott ◽  
Lina Mariana ◽  
Emma I. Masterman ◽  
Andrew P.R. Sutherland ◽  
...  

AbstractType 1, or autoimmune, diabetes is caused by the T-cell mediated destruction of the insulin-producing pancreatic beta cells. Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes akin to human type 1 diabetes. For this reason, the NOD mouse has been the preeminent murine model for human type 1 diabetes research for several decades. However, humanized mouse models are highly sought after because they offer both the experimental tractability of a mouse model and the clinical relevance of human-based research. Autoimmune T-cell responses against insulin, and its precursor proinsulin, play central roles in the autoimmune responses against pancreatic beta cells in both humans and NOD mice. As a first step towards developing a murine model of the human autoimmune response against pancreatic beta cells we set out to replace the murine insulin 1 gene (Ins1) with the human insulin gene (INS) using CRISPR/Cas9. Here we describe a NOD mouse strain that expresses human insulin in place of murine insulin 1, referred to as HuPI. HuPI mice express human insulin, and C-peptide, in their serum and pancreata and have normal glucose tolerance. Compared with wild type NOD mice, the incidence of diabetes is much lower in HuPI mice. Only 15-20% of HuPI mice developed diabetes after 300 days, compared to more than 60% of unmodified NOD mice. Immune-cell infiltration into the pancreatic islets of HuPI mice was not detectable at 100 days but was clearly evident by 300 days. This work highlights the feasibility of using CRISPR/Cas9 to create mouse models of human diseases that express proteins pivotal to the human disease. Furthermore, it reveals that even subtle changes in proinsulin protect NOD mice from diabetes.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Sundararajan Jayaraman ◽  
Arathi Jayaraman

Induction of autoimmune diseases is predisposed by background genetics and influenced by environmental factors including diet and infections. Since consumption of acidified drinking water leads to eradication of gastrointestinal pathogens in animals, we tested whether it may also influence the development of autoimmune diseases. The frequency of spontaneously occurring type 1 diabetes in female NOD mice that were maintained on acidified drinking water by the vendor did not alter after switching to neutral water in our facility. In addition, experimentally induced autoimmune encephalomyelitis was also unaffected by the pH of the drinking water. Interestingly, administration of complete Freund’s adjuvant alone or emulsified with a neuronal peptide to induce neurodegenerative disease during the prediabetic stage completely prevented the onset of diabetes regardless of the pH of the drinking water. However, exposure to microbial products later in life had only a partial blocking effect on diabetes induction, which was also not influenced by the ionic content of the drinking water. Taken together, these data indicate that the onset of autoimmune diseases is not influenced by the gastrointestinal pathogen-depleting treatment, acidified drinking water. Thus, administration of acidic drinking water does not appear to be an option for treating autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document