scholarly journals Replacing murine insulin 1 with human insulin protects NOD mice from diabetes

2019 ◽  
Author(s):  
Colleen M. Elso ◽  
Nicholas A. Scott ◽  
Lina Mariana ◽  
Emma I. Masterman ◽  
Andrew P.R. Sutherland ◽  
...  

AbstractType 1, or autoimmune, diabetes is caused by the T-cell mediated destruction of the insulin-producing pancreatic beta cells. Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes akin to human type 1 diabetes. For this reason, the NOD mouse has been the preeminent murine model for human type 1 diabetes research for several decades. However, humanized mouse models are highly sought after because they offer both the experimental tractability of a mouse model and the clinical relevance of human-based research. Autoimmune T-cell responses against insulin, and its precursor proinsulin, play central roles in the autoimmune responses against pancreatic beta cells in both humans and NOD mice. As a first step towards developing a murine model of the human autoimmune response against pancreatic beta cells we set out to replace the murine insulin 1 gene (Ins1) with the human insulin gene (INS) using CRISPR/Cas9. Here we describe a NOD mouse strain that expresses human insulin in place of murine insulin 1, referred to as HuPI. HuPI mice express human insulin, and C-peptide, in their serum and pancreata and have normal glucose tolerance. Compared with wild type NOD mice, the incidence of diabetes is much lower in HuPI mice. Only 15-20% of HuPI mice developed diabetes after 300 days, compared to more than 60% of unmodified NOD mice. Immune-cell infiltration into the pancreatic islets of HuPI mice was not detectable at 100 days but was clearly evident by 300 days. This work highlights the feasibility of using CRISPR/Cas9 to create mouse models of human diseases that express proteins pivotal to the human disease. Furthermore, it reveals that even subtle changes in proinsulin protect NOD mice from diabetes.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Cathleen Petzold ◽  
Julia Riewaldt ◽  
Deepika Watts ◽  
Tim Sparwasser ◽  
Sonja Schallenberg ◽  
...  

Studies on human type 1 diabetes (T1D) are facilitated by the availability of animal models such as nonobese diabetic (NOD) mice that spontaneously develop autoimmune diabetes, as well as a variety of genetically engineered mouse models with reduced genetic and pathogenic complexity, as compared to the spontaneous NOD model. In recent years, increasing evidence has implicated CD4+CD25+regulatory T (Treg) cells expressing the transcription factor Foxp3 in both the breakdown of self-tolerance and the restoration of immune homeostasis in T1D. In this paper, we provide an overview of currently available mouse models to study the role of Foxp3+Treg cells in the control of destructiveβcell autoimmunity, including a novel NOD model that allows specific and temporally controlled deletion of Foxp3+Treg cells.


2017 ◽  
Vol 49 (09) ◽  
pp. 693-700 ◽  
Author(s):  
Ahmed Shehata ◽  
Leticia Quintanilla-Fend ◽  
Sabrina Bettio ◽  
Zahra Kamyabi-Moghaddam ◽  
Ursula Kohlhofer ◽  
...  

Abstract11-Keto-β-Boswellic acid (KBA) has been shown to prevent infiltration of lymphocytes into pancreatic islets and appearance of peri-insular apoptotic cells in an animal model of autoimmune diabetes caused by injection of Multiple Low Doses of Streptozotocin (MLD-STZ), which is a chemical compound belonging to the class of nitrososureas. The aim of this work was to study whether or not KBA can also prevent/attenuate infiltration of lymphocytes into pancreatic islets and appearance of peri-insular apoptotic cells in an animal model of autoimmune diabetes caused by genetic dysfunction resembling human type 1 diabetes in several important features. Four weeks old female NOD mice received daily i.p. injections of 7.5 mg/kg of KBA over a period of 3 weeks. Compared to 4 weeks old animals there was significant infiltration of lymphocytes (CD3) into pancreatic islets and appearance of peri-insular apoptotic cells in the period between 4 and 7 weeks. During this time plasma glucose dropped significantly and body weight did not increase. As far as pro-inflammatory cytokines are concerned, except a small increase of IFN-γ, there was no change in the blood. In mice that had been treated with KBA between 4 and 7 weeks after birth no significant infiltration of lymphocytes into pancreatic islets and appearance of peri-insular apoptotic cells was observed, when compared to 4 weeks old mice. Moreover, there was no drop of blood glucose and the animals gained body weight. It is concluded that – similar to the model of MLD-STZ-diabetes – also in the NOD mouse model KBA is able to attenuate or even prevent development of insulitis, suggesting that KBA protects islets from autoimmune reaction regardless whether the signal is provided by a chemical compound or by genetic dysfunction. Whether this also holds for human type 1 diabetes remains to be established.


2017 ◽  
Author(s):  
Cornelia Schuster ◽  
Fangzhu Zhao ◽  
Stephan Kissler

AbstractType 1 diabetes (T1D) results from the autoimmune destruction of pancreatic beta cells and is partly caused by deficiencies in the Foxp3+ regulatory T cell (Treg) compartment. Conversely, therapies that increase Treg function can prevent autoimmune diabetes in animal models. The majority of Tregs develop in the thymus (tTregs), but a proportion of Foxp3+ Tregs is generated in the periphery (pTregs) from Foxp3-CD4+ T cell precursors. Whether pTregs play a distinct role in T1D has not yet been explored. We report here that pTregs are a key modifier of disease in the nonobesed diabetic (NOD) mouse model for T1D. We generated NOD mice deficient for the Foxp3 enhancer CNS1 involved in pTreg induction. We show that CNS1 knockout decreased the frequency of pTregs and increased the risk of diabetes. Our results show that pTregs fulfill an important non-redundant function in the prevention of beta cell autoimmunity that causes T1D.


Molecules ◽  
2013 ◽  
Vol 18 (4) ◽  
pp. 3841-3858 ◽  
Author(s):  
Kelly McCall ◽  
Martin Schmerr ◽  
Jean Thuma ◽  
Calvin James ◽  
Maria Courreges ◽  
...  

2006 ◽  
Vol 75 (1) ◽  
pp. 397-407 ◽  
Author(s):  
Karin A. Saunders ◽  
Tim Raine ◽  
Anne Cooke ◽  
Catherine E. Lawrence

ABSTRACT Gastrointestinal nematode infections are prevalent worldwide and are potent inducers of T helper 2 responses with the capacity to modulate the immune response to heterologous antigens. Parasitic helminth infection has even been shown to modulate the immune response associated with autoimmune diseases. Nonobese diabetic (NOD) mice provide a model for studying human autoimmune diabetes; as in humans, the development of diabetes in NOD mice has been linked to the loss of self-tolerance to beta cell autoantigens. Previous studies with the NOD mouse have shown that helminth and bacterial infection appears to inhibit type 1 diabetes by disrupting the pathways leading to the Th1-mediated destruction of insulin-producing beta cells. The aim of our study was to examine whether infection with the gastrointestinal helminths Trichinella spiralis or Heligmosomoides polygyrus could inhibit the development of autoimmune diabetes in NOD mice and to analyze the mechanisms involved in protection and the role of Th2 responses. Protection from diabetes was afforded by helminth infection, appeared to inhibit autoimmune diabetes by disrupting pathways leading to the destruction of beta cells, and was mediated by seemingly independent mechanisms depending on the parasite but which may be to be related to the capacity of the host to mount a Th2 response.


2021 ◽  
pp. 112361
Author(s):  
Isabel González-Mariscal ◽  
Macarena Pozo Morales ◽  
Silvana Y. Romero-Zerbo ◽  
Vanesa Espinosa-Jimenez ◽  
Alejandro Escamilla-Sánchez ◽  
...  

Author(s):  
Charanya Muralidharan ◽  
Abass M. Conteh ◽  
Michelle R. Marasco ◽  
Justin J. Crowder ◽  
Jeroen Kuipers ◽  
...  

AbstractAims/hypothesisPancreatic beta cells are highly metabolic secretory cells that are subjected to exogenous damaging factors such as proinflammatory cytokines or excess glucose that can cause accumulation of damage-inducing reactive oxygen species (ROS) during the pathogenesis of diabetes. We and others have shown that beta cell autophagy can reduce ROS to protect against apoptosis both in vitro and in vivo. While impaired islet autophagy has been demonstrated in human type 2 diabetes, it is unknown if islet autophagy is perturbed in the pathogenesis of type 1 diabetes. We hypothesized that beta cell autophagy is dysfunctional in type 1 diabetes, and that there is a progressive loss during early diabetes development.MethodsMouse pancreata were collected from chloroquine injected and non-injected NOR, nondiabetic NOD, and diabetic NOD mice. Age and BMI-matched pancreas tissue sections from human organ donors (n=34) were obtained from the Network for Pancreatic Organ Donors with Diabetes (nPOD). To assess autophagic flux, we injected the mice with chloroquine to inhibit the final stages of autophagy. We analyzed tissues for markers of autophagy via immunofluorescence analysis. Tissue sections were stained with antibodies against proinsulin or insulin (beta cell markers), LC3A/B (autophagosome marker), Lamp1 (lysosome marker), and p62 (autophagy adaptor protein and marker for autophagic flux). Images were collected on a scanning laser confocal microscope then analyzed with CellProfiler and ImageJ. Secondary lysosomes and telolysosomes (formerly called lipofuscin bodies, residual bodies or tertiary lysosomes) were analyzed in electron micrographs of pancreatic tissue sections from human organ donors (nPOD; n=12) deposited in www.nanotomy.org/OA/nPOD. Energy Dispersive X-ray (EDX) analysis was also performed on these tissues to analyze distribution of elements such as nitrogen, phosphorus, and osmium in secondary lysosomes and telolysosomes of nondiabetic and autoantibody positive donor tissues (n=5).ResultsWe observed increased autophagosome numbers in islets of diabetic NOD mice (p=0.0077) and increased p62 in islets of both nondiabetic and diabetic NOD mice (p<0.0001 in both cases) when compared to NOR mice. There was also a significant reduction in autophagosome:lysosome colocalization in islets of diabetic NOD mice compared to both nondiabetic NOD mice (p=0.0004) and NOR mice (p=0.0003). Chloroquine infusions elicited accumulation of autophagosomes in the islets of NOR (p=0.0029) and nondiabetic NOD mice (p<0.0001), but not in the islets of diabetic NOD mice. Chloroquine also stimulated an accumulation of the autophagy adaptor protein p62 in the islets of NOR mice (p<0.001), however this was not observed in NOD mice (regardless of diabetes status). In the human pancreata, we observed significantly reduced autophagosome:lysosome colocalization (p=0.0002) in the residual beta cells of donors with type 1 diabetes compared to nondiabetic controls. We also observed reduced colocalization of proinsulin with lysosomes in the residual beta cells of donors with type 1 diabetes compared to both nondiabetic (p<0.0001) and autoantibody positive donors (p<0.0001). Electron microscopy based analysis of human pancreas sections also revealed accumulation of telolysosomes in beta cells of autoantibody positive donors (p=0.0084), the majority of which had an nitrogen dense ring outside a phospholipid core.Conclusions/interpretationCollectively, we provide evidence of impairment in the final degradation stages of islet macroautophagy and crinophagy in human type 1 diabetes. We also document an accumulation of telolysosomes with nitrogen accumulation at their periphery in the beta cells of autoantibody positive donors. This demonstrates clear differences in the lysosome contents of autoantibody positive donors that may be associated with lysosome dysfunction prior to clinical hyperglycemia. We observe similar impairments in macroautophagy in the diabetic NOD mouse, a model of type 1 diabetes, suggesting that this mouse model can be appropriately used to study the pathogenesis of autophagy/crinophagy loss and how it relates to disease initiation and progression. Considering these data in the context of what is known regarding the cell-protective effects of islet autophagy, we suggest targeting beta cell autophagy pathways as an approach to reduce apoptosis in individuals at risk for type 1 diabetes development.Research in contextWhat is already known about this subject?Autophagy confers a cytoprotective role in the beta cell.Autophagy is reduced in type 2 diabetes.Autophagy in the context of type 1 diabetes is unexplored.What is the key question?Is autophagy reduced during the pathogenesis of human type 1 diabetes?What are the new findings?We provide evidence of reduced autophagy and crinophagy in human type 1 diabetes.These data are supported by observations of reduced autophagy in a mouse model of autoimmune diabetes.How might this impact on clinical practice in the foreseeable future?This study provides evidence that autophagy is impaired in human type 1 diabetes. Prior studies have shown that loss of autophagy in the islet is associated with increased beta cell apoptosis, therefore we propose that therapeutic targeting of autophagy pathways may reduce beta cell death in type 1 diabetes development.


2013 ◽  
Vol 436 (3) ◽  
pp. 400-405 ◽  
Author(s):  
Kunie Matsuoka ◽  
Michiko Saito ◽  
Kosuke Shibata ◽  
Michiko Sekine ◽  
Hiroshi Shitara ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1835
Author(s):  
Ewa Gurgul-Convey

Type 1 diabetes (T1DM) is a chronic autoimmune disease, with a strong genetic background, leading to a gradual loss of pancreatic beta-cells, which secrete insulin and control glucose homeostasis. Patients with T1DM require life-long substitution with insulin and are at high risk for development of severe secondary complications. The incidence of T1DM has been continuously growing in the last decades, indicating an important contribution of environmental factors. Accumulating data indicates that sphingolipids may be crucially involved in T1DM development. The serum lipidome of T1DM patients is characterized by significantly altered sphingolipid composition compared to nondiabetic, healthy probands. Recently, several polymorphisms in the genes encoding the enzymatic machinery for sphingolipid production have been identified in T1DM individuals. Evidence gained from studies in rodent islets and beta-cells exposed to cytokines indicates dysregulation of the sphingolipid biosynthetic pathway and impaired function of several sphingolipids. Moreover, a number of glycosphingolipids have been suggested to act as beta-cell autoantigens. Studies in animal models of autoimmune diabetes, such as the Non Obese Diabetic (NOD) mouse and the LEW.1AR1-iddm (IDDM) rat, indicate a crucial role of sphingolipids in immune cell trafficking, islet infiltration and diabetes development. In this review, the up-to-date status on the findings about sphingolipids in T1DM will be provided, the under-investigated research areas will be identified and perspectives for future studies will be given.


Diabetologia ◽  
2019 ◽  
Vol 62 (12) ◽  
pp. 2252-2261 ◽  
Author(s):  
Johan Verhagen ◽  
Norkhairin Yusuf ◽  
Emma L. Smith ◽  
Emily M. Whettlock ◽  
Kerina Naran ◽  
...  

Abstract Aims/hypothesis The molecular basis for the pathological impact of specific HLA molecules on autoimmune diseases such as type 1 diabetes remains unclear. Recent natural history studies in children have indicated a link between specific HLA genotypes and the first antigenic target against which immune responses develop. We set out to examine this link in vivo by exploring the diabetogenicity of islet antigens on the background of a common diabetes-associated HLA haplotype. Methods We generated a novel HLA-transgenic mouse model that expresses high-risk genes for type 1 diabetes (DRB1*03:01-DQA1*05:01-DQB1*02:01) as well as human CD80 under the rat insulin promoter and human CD4, on a C57BL/6 background. Adjuvanted antigen priming was used to reveal the diabetogenicity of candidate antigens and peptides. Results HLA-DR3-DQ2+huCD4+IA/IE−/−RIP.B7.1+ mice spontaneously developed autoimmune diabetes (incidence 46% by 35 weeks of age), accompanied by numerous hallmarks of human type 1 diabetes (autoantibodies against GAD65 and proinsulin; pancreatic islet infiltration by CD4+, CD8+ B220+, CD11b+ and CD11c+ immune cells). Disease was markedly accelerated and had deeper penetrance after adjuvanted antigen priming with proinsulin (mean onset 11 weeks and incidence 100% by 20 weeks post challenge). Moreover, the diabetogenic effect of proinsulin located to the 15-residue B29-C11 region. Conclusions/interpretation Our study identifies a proinsulin-derived peptide region that is highly diabetogenic on the HLA-DR3-DQ2 background using an in vivo model. This approach and the peptide region identified may have wider implications for future studies of human type 1 diabetes.


Sign in / Sign up

Export Citation Format

Share Document