scholarly journals Comparative Analysis of Digital Models of Objects of Cultural Heritage Obtained by the “3D SLS” and “SfM” Methods

2021 ◽  
Vol 11 (12) ◽  
pp. 5321
Author(s):  
Marcin Barszcz ◽  
Jerzy Montusiewicz ◽  
Magdalena Paśnikowska-Łukaszuk ◽  
Anna Sałamacha

In the era of the global pandemic caused by the COVID-19 virus, 3D digitisation of selected museum artefacts is becoming more and more frequent practice, but the vast majority is performed by specialised teams. The paper presents the results of comparative studies of 3D digital models of the same museum artefacts from the Silk Road area generated by two completely different technologies: Structure from Motion (SfM)—a method belonging to the so-called low-cost technologies—and by Structured-light 3D Scanning (3D SLS). Moreover, procedural differences in data acquisition and their processing to generate three-dimensional models are presented. Models built using a point cloud were created from data collected in the Afrasiyab museum in Samarkand (Uzbekistan) during “The 1st Scientific Expedition of the Lublin University of Technology to Central Asia” in 2017. Photos for creating 3D models in SfM technology were taken during a virtual expedition carried out under the “3D Digital Silk Road” program in 2021. The obtained results show that the quality of the 3D models generated with SfM differs from the models from the technology (3D SLS), but they may be placed in the galleries of the vitrual museum. The obtained models from SfM do not have information about their size, which means that they are not fully suitable for archiving purposes of cultural heritage, unlike the models from SLS.

Author(s):  
A. Cardaci ◽  
A. Versaci ◽  
P. Azzola

Abstract. The creation of three-dimensional models for the cataloguing and documentation of cultural heritage is today an emerging need in the cultural sphere and, above all, for museums. The cultural heritage is still catalogued and documented based on descriptive files assorted of photographic images which, however, fail to outline its spatial richness, possible only through the use of 3D artefacts. The essay aims to propose a methodology of digitalization by low-cost and easy-to-use systems, to be employed even by non-expert survey and photogrammetry’s operators. The case study of the statue of San Nicola da Tolentino, preserved at the Sant’Agostino complex in Bergamo, offered the possibility of a comparison between 3D models acquired with different digitalization tools (professional/action/amateur cameras and smartphone) and processed by several image-based 3D Reconstruction software and methods.


Heritage ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 306-314
Author(s):  
Monica Bercigli

This paper reports the research carried out using Structure from Motion survey techniques, which were developed on the basis of previous surveys and their subsequent representation through two-dimensional (2D) and three-dimensional (3D) drawings of the tomb, comparing them with drawings and watercolors by several painters of the past. This survey technique enables the reconstruction of three-dimensional models through photographs. The aim of this work is to define a procedural process which allows accurate and reliable three-dimensional reconstructions to be performed for the acquisition of knowledge and the dissemination of cultural heritage, taking advantage of representation and visualization techniques that have been developed in the last decade and that are based on historical references. The variety of digital products which can be produced (video games, 3D models, prints, websites, and augmented reality applications) allows a different approach to the representation to be taken, thereby re-evaluating limits, aims, and expressive potential. The virtual representative systems, enriched with cultural content, scientific information, and data, enhance the participation and awareness of knowledge of the final users of the products and are able to increase the interaction between the user and the information.


Author(s):  
P. Clini ◽  
N. Frapiccini ◽  
M. Mengoni ◽  
R. Nespeca ◽  
L. Ruggeri

Digital documentation and high-quality 3D representation are always more requested in many disciplines and areas due to the large amount of technologies and data available for fast, detailed and quick documentation. This work aims to investigate the area of medium and small sized artefacts and presents a fast and low cost acquisition system that guarantees the creation of 3D models with an high level of detail, making the digitalization of cultural heritage a simply and fast procedure. The 3D models of the artefacts are created with the photogrammetric technique Structure From Motion that makes it possible to obtain, in addition to three-dimensional models, high-definition images for a deepened study and understanding of the artefacts. For the survey of small objects (only few centimetres) it is used a macro lens and the focus stacking, a photographic technique that consists in capturing a stack of images at different focus planes for each camera pose so that is possible to obtain a final image with a higher depth of field. The acquisition with focus stacking technique has been finally validated with an acquisition with laser triangulation scanner Minolta that demonstrates the validity compatible with the allowable error in relation to the expected precision.


Author(s):  
Quentin Kevin Gautier ◽  
Thomas G. Garrison ◽  
Ferrill Rushton ◽  
Nicholas Bouck ◽  
Eric Lo ◽  
...  

PurposeDigital documentation techniques of tunneling excavations at archaeological sites are becoming more common. These methods, such as photogrammetry and LiDAR (Light Detection and Ranging), are able to create precise three-dimensional models of excavations to complement traditional forms of documentation with millimeter to centimeter accuracy. However, these techniques require either expensive pieces of equipment or a long processing time that can be prohibitive during short field seasons in remote areas. This article aims to determine the effectiveness of various low-cost sensors and real-time algorithms to create digital scans of archaeological excavations.Design/methodology/approachThe authors used a class of algorithms called SLAM (Simultaneous Localization and Mapping) along with depth-sensing cameras. While these algorithms have largely improved over recent years, the accuracy of the results still depends on the scanning conditions. The authors developed a prototype of a scanning device and collected 3D data at a Maya archaeological site and refined the instrument in a system of natural caves. This article presents an analysis of the resulting 3D models to determine the effectiveness of the various sensors and algorithms employed.FindingsWhile not as accurate as commercial LiDAR systems, the prototype presented, employing a time-of-flight depth sensor and using a feature-based SLAM algorithm, is a rapid and effective way to document archaeological contexts at a fraction of the cost.Practical implicationsThe proposed system is easy to deploy, provides real-time results and would be particularly useful in salvage operations as well as in high-risk areas where cultural heritage is threatened.Originality/valueThis article compares many different low-cost scanning solutions for underground excavations, along with presenting a prototype that can be easily replicated for documentation purposes.


Author(s):  
J. S. Markiewicz ◽  
S. Łapiński ◽  
R. Bienkowski ◽  
A. Kaliszewska

At present, digital documentation recorded in the form of raster or vector files is the obligatory way of inventorying historical objects. Today, photogrammetry is becoming more and more popular and is becoming the standard of documentation in many projects involving the recording of all possible spatial data on landscape, architecture, or even single objects. Low-cost sensors allow for the creation of reliable and accurate three-dimensional models of investigated objects. This paper presents the results of a comparison between the outcomes obtained when using three sources of image: low-cost Xiaomi cameras, a full-frame camera (Canon 5D Mark II) and middle-frame camera (Hasselblad-Hd4). In order to check how the results obtained from the two sensors differ the following parameters were analysed: the accuracy of the orientation of the ground level photos on the control and check points, the distribution of appointed distortion in the self-calibration process, the flatness of the walls, the discrepancies between point clouds from the low-cost cameras and references data. The results presented below are a result of co-operation of researchers from three institutions: the Systems Research Institute PAS, The Department of Geodesy and Cartography at the Warsaw University of Technology and the National Museum in Warsaw.


2021 ◽  
Vol 16 (1) ◽  
pp. 237-249
Author(s):  
Andrei-Ionuț APOPEI ◽  
◽  
Nicolae BUZGAR ◽  
Andrei BUZATU ◽  
Andreea-Elena MAFTEI ◽  
...  

Three-dimensional (3D) minerals and rocks in the form of interactive, engaging, and immersive experiences are of paramount importance to the geoscience community, researchers, students, and philomaths. Moreover, the SARS-CoV-2 (COVID-19) crisis affecting our society in the spring of 2020 highlighted the importance of 3D material in geoscience education — compared to 2D images, the three-dimensional models provide a better way to learn and to recognize different minerals and rocks, properties, textures, etc. This paper seeks to provide a comprehensive method to create an interactive scientific, learning, and cultural heritage environment in the field of Geosciences. In this paper, we overcome most of the Structure-from-Motion - Multi-View Stereo (SfM-MVS) photogrammetry limitations, where samples with a transparent, translucent, or glossy surface are a real challenge for the feature detection algorithms of the SfM workflow. Correct lighting setup, the usage of cross-polarized light photogrammetry workflow, anti-reflection coating spray and post-processing steps are the essential ingredients for an enhanced photogrammetric study. The main output of this research consists of a comprehensive virtual 3D collection of minerals and rocks which are available online via the Sketchfab repository of the Museum of Mineralogy and Petrography “Grigore Cobălcescu” (https://sketchfab.com/MineralogyPetrographyMuseum).


2018 ◽  
Vol 71 ◽  
pp. 00017 ◽  
Author(s):  
Gabriela Wojciechowska ◽  
Jakub Łuczak

The available photogrammetric solutions, combined with properly conducted surveying measurements enable to create fully applicable, three-dimensional models of architectural structures, which can be applied in, i.e. protection of cultural heritage or conservational documentation. Currently, we can see an increase in use of digital non-metric cameras in a photogrammetric inventory of sacred monuments. Properly obtained and analysed data allow to create a digital model of an object, which later might serve as a basis for a vector image used for architectural and construction purposes. The paper presents the procedure of creation of 3D models of sacred historic monuments of relatively small sizes with the use of terrestrial photogrammetry and UAV using the Agisoft PhotoScan Professional software.


Author(s):  
P. Clini ◽  
N. Frapiccini ◽  
M. Mengoni ◽  
R. Nespeca ◽  
L. Ruggeri

Digital documentation and high-quality 3D representation are always more requested in many disciplines and areas due to the large amount of technologies and data available for fast, detailed and quick documentation. This work aims to investigate the area of medium and small sized artefacts and presents a fast and low cost acquisition system that guarantees the creation of 3D models with an high level of detail, making the digitalization of cultural heritage a simply and fast procedure. The 3D models of the artefacts are created with the photogrammetric technique Structure From Motion that makes it possible to obtain, in addition to three-dimensional models, high-definition images for a deepened study and understanding of the artefacts. For the survey of small objects (only few centimetres) it is used a macro lens and the focus stacking, a photographic technique that consists in capturing a stack of images at different focus planes for each camera pose so that is possible to obtain a final image with a higher depth of field. The acquisition with focus stacking technique has been finally validated with an acquisition with laser triangulation scanner Minolta that demonstrates the validity compatible with the allowable error in relation to the expected precision.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jerzy Montusiewicz ◽  
Marek Miłosz ◽  
Jacek Kęsik ◽  
Kamil Żyła

AbstractHistorical costumes are part of cultural heritage. Unlike architectural monuments, they are very fragile, which exacerbates the problems of their protection and popularisation. A big help in this can be the digitisation of their appearance, preferably using modern techniques of three-dimensional representation (3D). The article presents the results of the search for examples and methodologies of implementing 3D scanning of exhibited historical clothes as well as the attendant problems. From a review of scientific literature it turns out that so far practically no one in the world has made any methodical attempts at scanning historical clothes using structured-light 3D scanners (SLS) and developing an appropriate methodology. The vast majority of methods for creating 3D models of clothes used photogrammetry and 3D modelling software. Therefore, an innovative approach was proposed to the problem of creating 3D models of exhibited historical clothes through their digitalisation by means of a 3D scanner using structural light technology. A proposal for the methodology of this process and concrete examples of its implementation and results are presented. The problems related to the scanning of 3D historical clothes are also described, as well as a proposal how to solve them or minimise their impact. The implementation of the methodology is presented on the example of scanning elements of the Emir of Bukhara's costume (Uzbekistan) from the end of the nineteenth century, consisting of the gown, turban and shoes. Moreover, the way of using 3D models and information technologies to popularise cultural heritage in the space of digital resources is also discussed.


Author(s):  
Daniele Gibelli ◽  
Andrea Palamenghi ◽  
Pasquale Poppa ◽  
Chiarella Sforza ◽  
Cristina Cattaneo ◽  
...  

AbstractPersonal identification of the living from video surveillance systems usually involves 2D images. However, the potentiality of three-dimensional facial models in gaining personal identification through 3D-3D comparison still needs to be verified. This study aims at testing the reliability of a protocol for 3D-3D registration of facial models, potentially useful for personal identification. Fifty male subjects aged between 18 and 45 years were randomly chosen from a database of 3D facial models acquired through stereophotogrammetry. For each subject, two acquisitions were available; the 3D models of faces were then registered onto other models belonging to the same and different individuals according to the least point-to-point distance on the entire facial surface, for a total of 50 matches and 50 mismatches. RMS value (root mean square) of point-to-point distance between the two models was then calculated through the VAM® software. Intra- and inter-observer errors were assessed through calculation of relative technical error of measurement (rTEM). Possible statistically significant differences between matches and mismatches were assessed through Mann–Whitney test (p < 0.05). Both for intra- and inter-observer repeatability rTEM was between 2.2 and 5.2%. Average RMS point-to-point distance was 0.50 ± 0.28 mm in matches, 2.62 ± 0.56 mm in mismatches (p < 0.01). An RMS threshold of 1.50 mm could distinguish matches and mismatches in 100% of cases. This study provides an improvement to existing 3D-3D superimposition methods and confirms the great advantages which may derive to personal identification of the living from 3D facial analysis.


Sign in / Sign up

Export Citation Format

Share Document