Rolling Resistance of a Nonpneumatic Tire Having a Porous Elastomer Composite Shear Band

2013 ◽  
Vol 41 (3) ◽  
pp. 154-173 ◽  
Author(s):  
Jaehyung Ju ◽  
Mallikarjun Veeramurthy ◽  
Joshua D. Summers ◽  
Lonny Thompson

ABSTRACT The shear band is the critical component of a nonpneumatic tire (NPT) when determining the rolling resistance resulting from the elastomer's shear friction. In an effort to reduce the rolling resistance of an NPT, a shear band made of a porous, fiber-reinforced elastomer is explored. The porous shear band is designed to have the same effective shear modulus as the shear modulus of a continuous shear band. The originality of the study in this article is in the design of a flexible, porous solid for fuel efficiency of a tire structure by including a low viscoelastic energy loss material—a carbon fiber that partially replaces the volume of high viscoelastic energy loss material—polyurethane. To make the NPT structure remain flexible, porous volumes were included. Finite element (FE)–based numerical experiments with ABAQUS were conducted to quantify the reduced energy loss of an NPT using hyperelastic and viscoelastic material models. Load carrying capacity of the NPT with the designed porous shear band is also discussed.

2014 ◽  
Vol 3 (1) ◽  
pp. 20130022 ◽  
Author(s):  
Christian Scholz ◽  
Mathias Woydt ◽  
Hardy Mohrbacher

2007 ◽  
Vol 348-349 ◽  
pp. 93-96
Author(s):  
Christian Carloni ◽  
Lucio Nobile

Carbon fiber reinforced polymer (CFRP) sheets have been extensively used for strengthening deteriorated concrete structures. The effectiveness of such strengthening depends upon the load transfer from concrete to the FRP composite. Shear debonding is usually caused by a crack that forms and then propagates at the interface between the adherents. The influence of the geometric parameters of the adherents on the fracture propagation is still a subject of research. This paper presents an experimental investigation performed on direct shear specimens to study the influence of the relative width of FRP and concrete on the load carrying capacity of the bond and the stress transfer between the adherents.


2012 ◽  
Vol 446-449 ◽  
pp. 1006-1013 ◽  
Author(s):  
Wan Lin Cao ◽  
Hong Ying Dong ◽  
Jian Wei Zhang

RC shear wall with STRC (steel tube-reinforced concrete) columns and embedded steel plate has been proposed and used in the project of an International Conference Center. In order to ascertain the seismic performance of this kind of composite shear walls with different openings in the practical engineering, four 1/7 scale specimens with shear span ration 2.0 were tested under low-frequency cyclic loading. The load-carrying capacity, ductility, stiffness and its attenuation, hysteretic property, energy dissipation capacity and failure mode of the specimens were analyzed. The effect of the embedded steel plate and the concealed steel trusses on the seismic performance of the walls was studied. The results show that the ductility and load-carrying capacity of RC shear wall are improved greatly by setting the embedded steel plate or concealed steel trusses in the wall; The embedded steel plate and the concrete work very well through the stud connectors welded on the steel plate and the tie bars inserted in the walls; The STRC columns have the advantage of higher load-carrying capacity, not easy to crack and better ductility; The new composite shear wall has good seismic performance and important practical value. It is suitable for large and complex application of high-rise buildings in the seismic regions.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2005 ◽  
Vol 10 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Z. Kala

The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper.


2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


1995 ◽  
Vol 23 (4) ◽  
pp. 256-265 ◽  
Author(s):  
P. S. Pillai

Abstract Energy loss per hour in a tire traveling at 80 km/h was obtained for a number of tires of different sizes and makes from the respective whole tire hysteresis loss of each tire. This loss value was then compared to the corresponding rolling loss obtained from the 1.7 m dynamometer rolling resistance method. The two methods agreed, indicating that the basic premise of the rolling resistance hysteresis ratio relation is valid.


2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


Sign in / Sign up

Export Citation Format

Share Document