How Good is Too Good? A Subjective Study on Over Enhancement of Images

2021 ◽  
Vol 2021 (29) ◽  
pp. 83-88
Author(s):  
Sahar Azimian ◽  
Farah Torkamani Azar ◽  
Seyed Ali Amirshahi

For a long time different studies have focused on introducing new image enhancement techniques. While these techniques show a good performance and are able to increase the quality of images, little attention has been paid to how and when overenhancement occurs in the image. This could possibly be linked to the fact that current image quality metrics are not able to accurately evaluate the quality of enhanced images. In this study we introduce the Subjective Enhanced Image Dataset (SEID) in which 15 observers are asked to enhance the quality of 30 reference images which are shown to them once at a low and another time at a high contrast. Observers were instructed to enhance the quality of the images to the point that any more enhancement will result in a drop in the image quality. Results show that there is an agreement between observers on when over-enhancement occurs and this point is closely similar no matter if the high contrast or the low contrast image is enhanced.

2021 ◽  
Vol 2021 (29) ◽  
pp. 258-263
Author(s):  
Marius Pedersen ◽  
Seyed Ali Amirshahi

Over the years, a high number of different objective image quality metrics have been proposed. While some image quality metrics show a high correlation with subjective scores provided in different datasets, there still exists room for improvement. Different studies have pointed to evaluating the quality of images affected by geometrical distortions as a challenge for current image quality metrics. In this work, we introduce the Colourlab Image Database: Geometric Distortions (CID:GD) with 49 different reference images made specifically to evaluate image quality metrics. CID:GD is one of the first datasets which include three different types of geometrical distortions; seam carving, lens distortion, and image rotation. 35 state-ofthe-art image quality metrics are tested on this dataset, showing that apart from a handful of these objective metrics, most are not able to show a high performance. The dataset is available at <ext-link ext-link-type="url" xlink:href="http://www.colourlab.no/cid">www.colourlab.no/cid</ext-link>.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Udomchai Techavipoo ◽  
Nattawut Sinsuebphon ◽  
Sakunrat Prompalit ◽  
Saowapak Thongvigitmanee ◽  
Walita Narkbuakaew ◽  
...  

Background. The National Science and Technology Development Agency (NSTDA) in Thailand researched and prototyped digital radiography systems under the brand name BodiiRay aiming for sustainable development and affordability of medical imaging technology. The image restoration and enhancement were implemented for the systems. Purpose. The image quality of the systems was evaluated using images from phantoms and from healthy volunteers. Methods. The survey phantom images from BodiiRay and other two commercial systems using the exposure settings for the chest, the abdomen, and the extremity were evaluated by three experience observers in terms of the high-contrast image resolution, the low-contrast image detectability, and the grayscale differentiation. The volunteer images of the chests, the abdomens, and the extremities from BodiiRay were evaluated by three specialized radiologists based on visual grading on 5-point scaled questionnaires for the anatomy visibility, the image quality satisfaction, and the diagnosis confidence in using the images. Results. BodiiRay phantom results were similar to those from the commercial systems. The overall performance averaged across the exposure settings showed that BodiiRay was slightly better than Fujifilm FDR Go in the low-contrast detectability ( p = 0.033 ) and in the grayscale differentiation ( p = 0.004 ). It was also slightly better than Siemens YSIO Max in the high-contrast resolution ( p = 0.018 ). The images of chest, pelvis, and hand phantoms illustrated comparable visual quality. For volunteer images, the percentage of the images scored ≥4 ranged from 61% to 99%, 23% to 92%, and 96% to 99% for the chest, abdomen, and extremity images, respectively. The average score ranged from 3.63 to 4.46, 3.18 to 4.21, and 4.41 to 4.51 for the chest, abdomen, and extremity images, respectively. Conclusion. The phantom image results showed the comparability of these systems. The clinical evaluation showed BodiiRay images provided sufficient image qualities for digital radiography of these body parts.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe ◽  
J. Michael Moseley

We have designed and built an electronic device which compares the resistance of a defined area of vacuum evaporated material with a variable resistor. When the two resistances are matched, the device automatically disconnects the primary side of the substrate transformer and stops further evaporation.This approach to controlled evaporation in conjunction with the modified guns and evaporation source permits reliably reproducible multiple Pt shadow films from a single Pt wrapped carbon point source. The reproducibility from consecutive C point sources is also reliable. Furthermore, the device we have developed permits us to select a predetermined resistance so that low contrast high-resolution shadows, heavy high contrast shadows, or any grade in between can be selected at will. The reproducibility and quality of results are demonstrated in Figures 1-4 which represent evaporations at various settings of the variable resistor.


2016 ◽  
Vol 2 (1) ◽  
pp. 489-491
Author(s):  
Shamim Ahmed ◽  
Marian Krüger ◽  
Christian Willomitzer ◽  
Golam A. Zakaria

AbstractIn this work, we developed a method to handle the image quality test-tool precisely. This test-tool is important to evaluate the quality of the medical images for pre-treatment planning phase. But the achieved images are estimated by naked eyes, which does not provide the precise result. Our main goal is to get the desired image parameters numerically. This numerical estimation overcomes the limitation of naked eye observation. Hence, it enhances the pre-treatment planning. The ETR-1 test-tool is considered here. The contrast, the low contrast details and line-pairs (lp/mm) were estimated.


2012 ◽  
Vol 2 (3) ◽  
pp. 131-133
Author(s):  
Saruchi Garg ◽  
Madan Lal

The main purpose of image enhancement is to bring out detail that is hidden in an image or to increase contrast in a low contrast image. Image enhancement techniques provide a multitude of choices for improving the visual quality of images. Appropriate choice of such techniques is greatly influenced by the imaging modality, task at hand and viewing conditions. This paper analyses the performance of some of existing image enhancement algorithms. The performance of algorithms are evaluated  both qualitatively and quantitatively.


2018 ◽  
Vol 5 (2) ◽  
pp. 6
Author(s):  
Lucie Sukupova ◽  
Jan Rydlo ◽  
Ondrej Hlavacek ◽  
Daniel Vedlich ◽  
Jan H. Peregrin

Objective: The aim of this study was to compare image quality of different abdominal acquisition modes under conditions simulating obese patients whose images suffer more from noise and scatter radiation. Images were acquired in clinically used acquisition modes on the static and dynamic phantom for four angiography systems.Methods: A LEGO cart with 34 cm of PMMA and Pro-RTG Fluo18 phantom were used to simulate obese patients. The low-contrast resolution was assessed subjectively by two readers and objectively using signal-difference-to-noise ratio (SDNR) and using SDNR to air kerma rate. The line-pair resolution was assessed using the transmitted contrast value for line-pair groups.Results: Systems use different exposure parameters and dose but they differ in postprocessing too. Qualitative and quantitative assessments of noise produced similar results, images produced by systems A and C were noisier than by systems B and D. Highest SDNR was provided by System B, whilst System A produced the lowest values, which were almost the same for objects with different contrast. The image quality was affected mainly by frame lengths and postprocessing, but also by the dose. The images of the static phantom were better compared to the images of the dynamic phantom, which was an expected result.Conclusions: It was possible to identify image quality differences and to characterize features of postprocessing from measurements on standardized objects. A potential for optimization on some systems was identified, although further work, including assessment of clinical images, would be needed as part of the optimization process.


Author(s):  
Anaïs Viry ◽  
Christoph Aberle ◽  
Thiago Lima ◽  
Reto Treier ◽  
Sebastian T. Schindera ◽  
...  

Abstract Objectives To assess task-based image quality for two abdominal protocols on various CT scanners. To establish a relationship between diagnostic reference levels (DRLs) and task-based image quality. Methods A protocol for the detection of focal liver lesions was used to scan an anthropomorphic abdominal phantom containing 8- and 5-mm low-contrast (20 HU) spheres at five CTDIvol levels (4, 8, 12, 16, and 20 mGy) on 12 CTs. Another phantom with high-contrast calcium targets (200 HU) was scanned at 2, 4, 6, 10, and 15 mGy using a renal stones protocol on the same CTs. To assess the detectability, a channelized Hotelling observer was used for low-contrast targets and a non-prewhitening observer with an eye filter was used for high contrast targets. The area under the ROC curve and signal to noise ratio were used as figures of merit. Results For the detection of 8-mm spheres, the image quality reached a high level (mean AUC over all CTs higher than 0.95) at 11 mGy. For the detection of 5-mm spheres, the AUC never reached a high level of image quality. Variability between CTs was found, especially at low dose levels. For the search of renal stones, the AUC was nearly maximal even for the lowest dose level. Conclusions Comparable task-based image quality cannot be reached at the same dose level on all CT scanners. This variability implies the need for scanner-specific dose optimization. Key Points • There is an image quality variability for subtle low-contrast lesion detection in the clinically used dose range. • Diagnostic reference levels were linked with task-based image quality metrics. • There is a need for specific dose optimization for each CT scanner and clinical protocol.


Sign in / Sign up

Export Citation Format

Share Document