scholarly journals The Effect of Grain Boundary Cavities on the Tertiary Creep Behavior and Rupture Life of 1.25Cr-0.5Mo Steel Welds

2004 ◽  
Vol 44 (8) ◽  
pp. 1441-1450 ◽  
Author(s):  
Shimpei Fujibayashi
YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 363-373
Author(s):  
A Kanni Raj ◽  

The creep behavior of AISI 310S stainless steel taken from SAIL’s Salem stainless steel plant has been investigated by constant load tensile creep test at the temperatures of 973, 1023, and 1073 K and loads of 66.6, 74.8, 86.6, and 94.8 MPa. It exhibits steadystate creep behavior in most test conditions. The double logarithm plot of rupture life and applied stress yielded straight lines at all the three test temperatures indicating that power-law creep due to dislocation climb is the operating mechanism of creep deformation. Linear relationship was obtained for plots of logarithm of rupture life against inverse temperature obeying Arrhenius type of temperature dependence with activation energy of 340 kJ/mol. The stress-rupture data yielded a master curve of Larson-Miller parameter. The plot of Monkman-Grant relationship is typical indicating that rupture is controlled by growth of grain boundary cavities. The metallographic examination of crept samples revealed formation of grain boundary voids and cracks leading to intergranular creep fracture. Deformation twins and carbide precipitates were also observed. Creep-rupture properties are compared with that of AISI 600 ironbased superalloy to analyze quantitatively its behavior


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
A. Kanni Raj

The creep behavior of AISI 310S stainless steel taken from SAIL’s Salem stainless steel plant has been investigated by constant load tensile creep test at the temperatures of 973, 1023, and 1073 K and loads of 66.6, 74.8, 86.6, and 94.8 MPa. It exhibits steady-state creep behavior in most test conditions. The double logarithm plot of rupture life and applied stress yielded straight lines at all the three test temperatures indicating that power-law creep due to dislocation climb is the operating mechanism of creep deformation. Linear relationship was obtained for plots of logarithm of rupture life against inverse temperature obeying Arrhenius type of temperature dependence with activation energy of 340 kJ/mol. The stress-rupture data yielded a master curve of Larson-Miller parameter. The plot of Monkman-Grant relationship is typical indicating that rupture is controlled by growth of grain boundary cavities. The metallographic examination of crept samples revealed formation of grain boundary voids and cracks leading to intergranular creep fracture. Deformation twins and carbide precipitates were also observed. Oxidation tests were also carried out isothermally at 973 K, 1023 K, and 1073 K in dry air. The plots of mass gain versus square root time were linear at all the three test temperatures obeying parabolic kinetics of oxidation. It was found that scales are well adherent to the substrate. The plot of parabolic rate constant and inverse temperature was linear giving an activation energy value of 210 kJ/mol. The metallographic examination of an oxidized sample reveals duplex types of scales. Finally, rupture properties are compared with that of AISI 600 iron-based superalloy and oxidation weight gain analysis with surface nanocrystalline AISI 310S stainless steel to analyze quantitatively its behavior.


1989 ◽  
Vol 75 (3) ◽  
pp. 545-552 ◽  
Author(s):  
Junshan ZHANG ◽  
Weishing CHEN ◽  
Ziben CAO ◽  
Ryohei TANAKA

2020 ◽  
Vol 7 (1) ◽  
pp. 016580
Author(s):  
Hari Krishan Yadav ◽  
A R Ballal ◽  
M M Thawre ◽  
V D Vijayanand

2010 ◽  
Vol 17 (3) ◽  
pp. 350-361
Author(s):  
C.J. Boehlert ◽  
S.C. Longanbach

AbstractUdimet 188 was subjected to thermomechanical processing (TMP) in an attempt to understand the effects of cold-rolling deformation on the microstructure and tensile-creep behavior. Commercially available sheet was cold rolled to varying amounts of deformation (between 5–35% reduction in sheet thickness) followed by a solution treatment at 1,464 K (1,191°C) for 1 h and subsequent air cooling. This sequence was repeated four times to induce a high-volume fraction of low-energy grain boundaries. The resultant microstructure was characterized using electron backscattered diffraction. The effect of the TMP treatment on the high-temperature [1,033–1,088 K (760–815°C)] creep behavior was evaluated. The measured creep stress exponents (6.0–6.8) suggested that dislocation creep was dominant at 1,033 K (760°C) for stresses ranging between 100–220 MPa. For stresses ranging between 25–100 MPa at 1,033 K (760°C), the stress exponents (2.3–2.8) suggested grain boundary sliding was dominant. A significant amount of grain boundary cracking was observed both on the surface and subsurface of deformed samples. To assess the mechanisms of crack nucleation, in situ scanning electron microscopy was performed during the elevated-temperature tensile-creep deformation. Cracking occurred preferentially along general high-angle grain boundaries (GHAB) and less than 25% of the cracks were found on low-angle grain boundaries (LAB) and coincident site lattice boundaries (CSLB). Creep rupture experiments were performed at T = 1,088 K (815°C) and σ = 165 MPa and the greatest average time-to-rupture was exhibited by the TMP sheet with the greatest fraction of LAB+CSLB. However, a clear correlation was not exhibited between the grain boundary character distribution and the minimum creep rates. The findings of this work suggest that although grain boundary engineering may be possible for this alloy, simply relating the fraction of grain boundary types to the creep resistance is not sufficient.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada

Creep deformation property of Grade 91 steels was analyzed on more than 370 creep curves over a wide range of time to rupture from about 10 hours to beyond 100,000 hours, in order to evaluate time to 1% total strain, time to minimum creep rate and time to initiation of tertiary creep. Time to initiation of tertiary creep was assessed as a 0.2% offset with a slope of minimum creep rate. It is difficult to determine time to minimum creep rate precisely, which is a basis of 0.2% offset, however, it has been confirmed that time to initiation of tertiary creep is not sensitive to the time when the creep rate indicates minimum value. Life ratio of 1% total strain time against creep rupture time increases up to about 60% with increase of temperature and decrease of stress. Life ratio of time to initiation of tertiary creep also tends to increase with decrease in stress. However, change of it is in a range of 50 to 60% of creep rupture life over a wide range of creep rupture life from 10 hours to 100,000 hours, and it is not sensitive to creep test temperature. Over a range of temperatures from 500 to 600°C and up to about 200,000 hours, a temperature and time-dependent stress intensity limit, St is controlled by 67% of minimum stress to rupture. However, a difference between 67% of minimum stress to rupture and 80% of minimum stress to initiation of tertiary creep decreases with increases in temperature and time, and both values approach each other in the long-term beyond about 100,000 hours at 600°C. In the long-term beyond about 10,000 hours at 650°C, St is controlled by 80% of minimum stress to initiation of tertiary. The stable life fraction of time to initiation of tertiary creep establish a reliability of a temperature and time-dependent stress intensity limit value.


2000 ◽  
Vol 30 ◽  
pp. 83-87 ◽  
Author(s):  
Paul Duval ◽  
Laurent Arnaud ◽  
Olivier Brissaud ◽  
Maureen Montagnat ◽  
Sophie de la Chapelle

AbstractInformation on deformation modes, fabric development and recrystallization processes was obtained by study of deep ice cores from polar ice sheets. It is shown that intracrystalline slip is the main deformation mechanism in polar ice sheets. Grain-boundary sliding does not appear to be a significant deformation mode. Special emphasis was laid on the occurrence of "laboratory" tertiary creep in ice sheets. The creep behavior is directly related to recrystallization processes. Grain-boundary migration associated with grain growth and rotation recrystallization accommodates dislocation slip and counteracts strain hardening. The fabric pattern is similar to that induced only by slip, even if rotation recrystallization slows down fabric development. Fabrics which develop during tertiary creep, and are associated with migration recrystallization, are typical recrystallization fabrics. They are associated with the fast boundary migration regime as observed in temperate glaciers. A decrease of the stress exponent is expected from 3, when migration recrystallization occurs, to a value ≤ 2 when normal grain growth occurs.


Sign in / Sign up

Export Citation Format

Share Document