The Microstructure and Creep Behavior of Cold Rolled Udimet 188 Sheet

2010 ◽  
Vol 17 (3) ◽  
pp. 350-361
Author(s):  
C.J. Boehlert ◽  
S.C. Longanbach

AbstractUdimet 188 was subjected to thermomechanical processing (TMP) in an attempt to understand the effects of cold-rolling deformation on the microstructure and tensile-creep behavior. Commercially available sheet was cold rolled to varying amounts of deformation (between 5–35% reduction in sheet thickness) followed by a solution treatment at 1,464 K (1,191°C) for 1 h and subsequent air cooling. This sequence was repeated four times to induce a high-volume fraction of low-energy grain boundaries. The resultant microstructure was characterized using electron backscattered diffraction. The effect of the TMP treatment on the high-temperature [1,033–1,088 K (760–815°C)] creep behavior was evaluated. The measured creep stress exponents (6.0–6.8) suggested that dislocation creep was dominant at 1,033 K (760°C) for stresses ranging between 100–220 MPa. For stresses ranging between 25–100 MPa at 1,033 K (760°C), the stress exponents (2.3–2.8) suggested grain boundary sliding was dominant. A significant amount of grain boundary cracking was observed both on the surface and subsurface of deformed samples. To assess the mechanisms of crack nucleation, in situ scanning electron microscopy was performed during the elevated-temperature tensile-creep deformation. Cracking occurred preferentially along general high-angle grain boundaries (GHAB) and less than 25% of the cracks were found on low-angle grain boundaries (LAB) and coincident site lattice boundaries (CSLB). Creep rupture experiments were performed at T = 1,088 K (815°C) and σ = 165 MPa and the greatest average time-to-rupture was exhibited by the TMP sheet with the greatest fraction of LAB+CSLB. However, a clear correlation was not exhibited between the grain boundary character distribution and the minimum creep rates. The findings of this work suggest that although grain boundary engineering may be possible for this alloy, simply relating the fraction of grain boundary types to the creep resistance is not sufficient.

Author(s):  
Eswarahalli Venkatesh ◽  
L.E. Murr

In recent years, many researchers have shown great interest in understanding the structure of grain boundaries and their influence on the mechanical properties in metals and alloys. In recent years, the structure of grain boundaries and their control have been considered as a means of understanding the strengthening mechanisms in metals and alloys. There are many ways by which the grain boundary structure can be changed both in pure metals and alloys. One such means considered here is the thermomechanical treatment of pure metals.In the present work, high purity (99.9999%) aluminum sheet, mill rolled to 0.004 in. thick, is used. The as-received condition of the sample was flash-annealed at 903°K in an argon atmosphere. Batch specimens from this stock were cold rolled to 50% reduction in thickness and annealed in air at 903°K followed by either furnace cooling or air cooling to room temperature.


2000 ◽  
Vol 6 (S2) ◽  
pp. 940-941
Author(s):  
A.J. Schwartz ◽  
M. Kumar ◽  
P.J. Bedrossian ◽  
W.E. King

Grain boundary network engineering is an emerging field that encompasses the concept that modifications to conventional thermomechanical processing can result in improved properties through the disruption of the random grain boundary network. Various researchers have reported a correlation between the grain boundary character distribution (defined as the fractions of “special” and “random” grain boundaries) and dramatic improvements in properties such as corrosion and stress corrosion cracking, creep, etc. While much early work in the field emphasized property improvements, the opportunity now exists to elucidate the underlying materials science of grain boundary network engineering. Recent investigations at LLNL have coupled automated electron backscatter diffraction (EBSD) with transmission electron microscopy (TEM)5 and atomic force microscopy (AFM) to elucidate these fundamental mechanisms.An example of the coupling of TEM and EBSD is given in Figures 1-3. The EBSD image in Figure 1 reveals “segmentation” of boundaries from special to random and random to special and low angle grain boundaries in some grains, but not others, resulting from the 15% compression of an Inconel 600 polycrystal.


2007 ◽  
Vol 26-28 ◽  
pp. 1003-1006 ◽  
Author(s):  
Jae Hyung Cho

Grain boundary characteristics are defined by five parameter, grain boundary plane normal and misorientation angle/axis between two adjacent grains. The influence of the grain boundary character distribution on lattice evolution during deformation was investigated using three-dimensional crystal plasticity finite element method (CPFEM). Various combinations of grain boundaries were modeled systematically. In analyzing the numerical microstructural characterization obtained by the simulation, orientation average scheme and correlation parameters between misorientation and its special distribution are used. Inter- and intra-grain structures were investigated using the spatial distribution of lattice orientation. Main emphasis was placed on misorientation distributions around grain boundaries, where grain interaction mainly occurred.


2012 ◽  
Vol 724 ◽  
pp. 359-362
Author(s):  
De Ning Zou ◽  
Rong Liu ◽  
Jiao Li ◽  
Kun Wu ◽  
Xiao Hua Liu

The precipitation behavior of nitrides and carbides occurred in aging process for 10Cr21Mn16NiN austenitic stainless steel at intermediate temperature was investigated by use of thermodynamic calculation, metallography and electron microscopy analysis. The precipitates evolved from chain-like initiatively along grain boundaries at lower aging temperature, to that along grain boundaries and inside the grain of austenite with more content as the temperature rising gradually. When aging at 800 °C, precipitates became layered tablet shaped and the composition was ascertained the mixture of Cr2N and M23C6. At a certain temperature, the volume fraction of precipitates for the aged testing steel by air cooling was slightly higher than that by water quenching.


2020 ◽  
Vol 321 ◽  
pp. 11048
Author(s):  
Ren Yong ◽  
Yang Nan ◽  
Lei Jinwen ◽  
Li Shaoqiang ◽  
Du Yuxuan

The effects of primary α phase volume fraction on the tensile properties at 400℃ of TC4 titanium alloy was studied by different solution temperature(Tβ-(10~80)℃). The effects of the thick of secondary α phase on the tensile properties at 400℃ of TC4 titanium alloy was studied by different cooling speed after solution treatment (water quench, air cooling, furnace cooling). The results show that with the decrease of primary α phase, the tensile and yield strength increase up, but the ductility has a little change. The thick of secondary α phase increases with the deceases of cooling speed after solution treatment, highest tensile and yield strength by water quench, the tensile strength of air cooling and furnace cooling were basically the same, but the yield strength of furnace cooling was 40MPa lower than air cooling. Therefore, the influence of the primary α phase volume fraction on the tensile strength at 400℃ was particularly obvious, we can control solution treatment and cooling way in combination with different requirements.


Author(s):  
Tadao Watanabe

As demonstrated early 1980’s (1), the scanning electron rnicrocopy-electron channelling pattern (SEM-ECP) technique is very powerful in determination of orientation of individual grains and the character of grain boundaries in polycrystalline materials. Figure 1(a) and (b) show SEM and ECP images of a grain boundary in polycrystal line iron-6.5 mass % silicon ribbon produced by rapid solidification and subsequent annealing. We can intuitively recognize from the SEM-ECP image that the character of the boundary is of <100> tilt type with about 7° misorientation angle. This kind of direct observation is very useful for a study of grain boundary migration and grain growth.This paper discusses advantages of the SEM-ECP technique for the precise determination of the character of grain boundary and for statistical analysis of grain boundaries to bridge roles of individual grain boundaries and bulk properties in a polycrystal. The new microstructural parameter associated with grin boundary termed “grain boundary character distribution (GBCD)” which was introduced by the present author (2,3) and has been utilized in designing and engineering grain boundaries in order to produce desirable and/or high bulk performance in polycrystalline materials (4,5). GBCD describes the type and the frequency of different types of grain boundaries, ie. random general boundaries and special boundaries like low-angle boundaries and low Σ coincidence boundaries.


2021 ◽  
Vol 1016 ◽  
pp. 1368-1373
Author(s):  
Xiao Yun Song ◽  
Wen Jun Ye ◽  
Song Xiao Hui

The microstructures and shape memory behaviors of Ti-18Nb-6Zr (at.%) alloy subjected to different heat treatments were investigated through optical microscopy (OM), X-ray diffraction (XRD), Transmission electron microscopy (TEM) and tensile tests. Recrystallization occurs in cold-rolled Ti-18Nb-6Zr alloy after solution treatment at 600~800 °C. The cooling rate after solution treatment at 800°C shows a dramatic effect on the microstructure of the alloy. The microstructures for the water quenching (WQ) and oil quenching (OQ) specimens are composed of single α'' martensite phase, while for the air cooling (AC) specimen, the microstructure consists of predominant β phase and a small amount of fine athermal ω phase. During tensile deformation, two-stage yielding is observed in the alloy subjected to 800°C/0.5h/WQ heat treatment. The stress for martensite variants reorientation and the yield stress for plastic deformation are 310MPa and 455MPa, respectievely, and the maximum shape memory strain of 3.1% is obtained with pre-strain of 6%.


2007 ◽  
Vol 539-543 ◽  
pp. 3389-3394 ◽  
Author(s):  
Wei Guo Wang

The progress of grain boundary engineering (GBE) is overviewed and the challenges for further investigations emphasized. It points out that, the electron backscatter diffraction (EBSD) reconstruction of grain boundaries, which gives the information of connectivity interruption of general high angle boundaries (HABs), is more significant than purely pursuing high frequency of so-called special boundaries. The criterion for the optimization of grain boundary character distribution (GBCD) needs to be established. The energy spectrum and the degradation susceptibility of grain boundaries of various characters including HABs and low Σ(Σ≤29) coincidence site lattice (CSL) needs to be studied and ascertained. And finally, the newly proposed model of non-coherent Σ3 interactions for GBCD optimization are discussed.


2010 ◽  
Vol 654-656 ◽  
pp. 488-491 ◽  
Author(s):  
Hyun Uk Hong ◽  
In Soo Kim ◽  
Baig Gyu Choi ◽  
Hi Won Jeong ◽  
Seong Moon Seo ◽  
...  

The effects of grain boundary serration on grain coarsening and liquation behavior in simulated weld heat-affected-zone (HAZ) of a wrought Ni-based superalloy Alloy 263 have been investigated. Recently, the present authors have found that grain boundary serration occurs in the absence of adjacent coarse γ' particles or M23C6 carbides when a specimen is direct-aged with a combination of slow cooling from solution treatment temperature to aging temperature. This serration leads to a change in grain boundary character as special boundary based on the crystallographic analysis demonstrating that the grain boundaries tend to serrate to have specific segments approaching to one {111} low-index plane at a boundary. The present study was initiated to investigate the interdependence of the serration and HAZ property with a consideration of this serration as a potential for the use of a damage-tolerant microstructure. It was found that the serrated grain boundaries suppress effectively grain coarsening, and are highly resistant to liquation cracking in HAZ due to their lower tendency to be wetted and penetrated by the liquid phase. These results reflect closely a significant decrease in interfacial energy as well as grain boundary configuration by the serration.


2004 ◽  
Vol 467-470 ◽  
pp. 269-274 ◽  
Author(s):  
Hotaka Homma ◽  
Shuichi Nakamura ◽  
Naoki Yoshinaga

Heavily cold rolled BCC steel has been indicated to generate {411}<148> recrystallisation texture and its family orientations which might be represented as {h,1,1}<1/h,1,2>. As a-fibre structure, or RD//<011> texture is significantly developed during the cold rolling, it is naturally speculated to be the recrystallisation site of {h,1,1}<1/h,1,2> fibre. The present paper prompts to demonstrate the recrystallisation procedure by utilising EBSP-OIM analysis. The first demonstration was carried out with OIM analysis on partially recrystallised cold rolled steel. At the stage of 50% recrystallisation, only ND//<111> texture has appeared for the recrystallised area. {100}<011> - {211}<011> a-fibre remains as deformed structure, and several {h,1,1}<1/h,1,2> grains could be found at the grain boundaries. Therefore, a bi-crystal of {100}<011> was employed to simulate the irregular deformation at the grain boundary. After cold rolling, a warp toward the grain boundary was observed. Although the interior of the {100}<011> single crystal was hardly recrystallised, sharp {411}<148> texture was created along the grain boundary. In order to confirm the phenomenon, another experiment was carried out that a cold rolled {100}<011> single crystal was bent along the rolling direction and annealed. Very sharp {411}<148> recrystallisation texture was formed again at the bent perimeter. These experimental results lead us to conclude that the irregular strain was sufficiently piled at the grain boundary after the heavy deformation and generates {h,1,1}<1/h,1,2> texture. On {100} pole figures, the recrystallisation textures were equivalently scattered around three <100> poles, therefore the rotation relationship around <111> axes with the original orientation was suggested.


Sign in / Sign up

Export Citation Format

Share Document