Using blood lactate concentration to predict muscle damage and jump performance response to maximal stretch-shortening cycle exercise

Author(s):  
Vladimir Manojlović ◽  
Frane Erčulj
2006 ◽  
Vol 101 (5) ◽  
pp. 1320-1327 ◽  
Author(s):  
Mark Burnley ◽  
Jonathan H. Doust ◽  
Andrew M. Jones

Prior heavy exercise markedly alters the O2 uptake (V̇o2) response to subsequent heavy exercise. However, the time required for V̇o2 to return to its normal profile following prior heavy exercise is not known. Therefore, we examined the V̇o2 responses to repeated bouts of heavy exercise separated by five different recovery durations. On separate occasions, nine male subjects completed two 6-min bouts of heavy cycle exercise separated by 10, 20, 30, 45, or 60 min of passive recovery. The second-by-second V̇o2 responses were modeled using nonlinear regression. Prior heavy exercise had no effect on the primary V̇o2 time constant (from 25.9 ± 4.7 s to 23.9 ± 8.8 s after 10 min of recovery; P = 0.338), but it increased the primary V̇o2 amplitude (from 2.42 ± 0.39 to 2.53 ± 0.41 l/min after 10 min of recovery; P = 0.001) and reduced the V̇o2 slow component (from 0.44 ± 0.13 to 0.21 ± 0.12 l/min after 10 min of recovery; P < 0.001). The increased primary amplitude was also evident after 20–45 min, but not after 60 min, of recovery. The increase in the primary V̇o2 amplitude was accompanied by an increased baseline blood lactate concentration (to 5.1 ± 1.0 mM after 10 min of recovery; P < 0.001). Baseline blood lactate concentration was still elevated after 20–60 min of recovery. The priming effect of prior heavy exercise on the V̇o2 response persists for at least 45 min, although the mechanism underpinning the effect remains obscure.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 596 ◽  
Author(s):  
Alistair Mallard ◽  
David Briskey ◽  
Andrew Richards ◽  
Dean Mills ◽  
Amanda Rao

The aim of this study was to evaluate the effect of palmitoylethanolamide (PEA), a cannabimimetic compound and lipid messenger, on recovery from muscle damaging exercise. Twenty-eight healthy young male participants attended the laboratory four times on subsequent days. In the first visit, baseline characteristics were recorded before participants were randomized to consume either liquid PEA (167.5 mg Levagen+ with 832.5 mg maltodextrin) or a matched placebo (1 g maltodextrin) drink. Leg press exercise consisted of four sets at 80% of one repetition maximum followed by a performance set. Muscle soreness, thigh circumference, blood lactate concentration, biomarkers of muscle damage and inflammation, and transcription factor pathways were measured pre- and immediately post-exercise and again at 1, 2, 3, 24, 48, and 72 h post-exercise. The leg press exercise increased (p < 0.05) blood lactate concentration and induced muscle damage as evidenced by increased muscle soreness, thigh circumference, biomarkers of muscle damage, and concentrations of tumor necrosis factor-α. PEA reduced (p < 0.05) myoglobin and blood lactate concentrations and increased protein kinase B phosphorylation following exercise. Taken together, these results indicate PEA supplementation may aid in muscle recovery from repeat bouts of exercise performed within a short duration by reducing myoglobin and lactate concentration.


2015 ◽  
Vol 40 (2) ◽  
pp. 155-161 ◽  
Author(s):  
Meaghan J. MacNutt ◽  
Carli M. Peters ◽  
Catherine Chan ◽  
Jason Moore ◽  
Serena Shum ◽  
...  

Repeatedly performing exercise in hypoxia could elicit an independent training response and become an unintended co-intervention. The primary purposes of this study were to determine if hypoxic exercise responses changed across repeated testing and to assess the day-to-day variability of commonly used measures of cardiorespiratory and metabolic responses to hypoxic exercise. Healthy young males (aged 23 ± 2 years) with a maximal O2 consumption of 50.7 ± 4.7 mL·kg−1·min−1 performed 5 trials (H1 to H5) over a 2-week period in hypoxia (fraction of inspired oxygen = 0.13). Participants completed 3-min stages at 20%, 40%, 60%, and 10% of individual peak power. With increasing cycle exercise intensity there were increases in minute ventilation, O2 consumption, CO2 production, respiratory exchange ratio, heart rate (HR), blood lactate concentration, and ratings of perceived exertion for legs and respiratory system along with a reduction in oxyhaemoglobin saturation (%SpO2) (all p < 0.001). There were no systematic changes from H1 to H5 (p > 0.05). Most measures were highly repeatable across testing sessions with the coefficient of variation (CV) averaging ≤10% of the mean value in all variables except O2 consumption (17%), CO2 production (11%) and blood lactate concentration (17%). For HR and %SpO2 the CV was <5%. The exercise protocol did not elicit a training response when repeated 5 times during a 2-week period and the variability of exercise responses was low. We conclude that this protocol allows detection of small changes in cardiorespiratory responses to hypoxic exercise that might occur during exposure to hypoxia.


2018 ◽  
Vol 28 (5) ◽  
pp. 547-552 ◽  
Author(s):  
Anne Delextrat ◽  
Sinead Mackessy ◽  
Luis Arceo-Rendon ◽  
Aaron Scanlan ◽  
Roger Ramsbottom ◽  
...  

The aim of this study was to investigate the effect of 3-day serial sodium bicarbonate ingestion on repeated sprint and jump performance. Fifteen female university basketball players (23.3 ± 3.4 years; 173.1 ± 5.8 cm; 65.8 ± 6.3 kg; 23.6 ± 4.9% body fat) ingested 0.4 g/kg body mass of sodium bicarbonate or placebo for 3 days (split in three equal daily doses), before completing a simulated basketball exercise. Sprint and circuit times, jump heights, performance decrements, and gastrointestinal side effects were recorded during the test, and blood lactate concentration was measured pre- and posttest. Sodium bicarbonate supplementation led to significant decreases in mean sprint times (1.34 ± 0.23 vs. 1.70 ± 0.41 s, p = .008, 95% confidence intervals [−0.54, −0.10 s]) and mean circuit times (30.6 ± 2.0 vs. 31.3 ± 2.0 s, p = .044) and significantly greater mean jump height (26.8 [range 25.2–34.2] vs. 26.0 [range 25.6–33.6] cm, p = .013) compared with placebo. Performance decrement was significantly less for sprints with sodium bicarbonate compared with placebo (9.9 [range 3.4–37.0]% vs. 24.7 [range 4.1–61.3]%, p = .013), but not different for jumps (13.1 ± 4.5% vs. 12.5 ± 3.1%, p = .321) between conditions. No differences in gastrointestinal side effects were noted between conditions. Significantly greater postexercise blood lactate concentrations were measured in the sodium bicarbonate condition compared with the placebo condition (8.2 ± 2.8 vs. 6.6 ± 2.4 mmol/L, p = .010). This study is the first to show that serial loading of sodium bicarbonate is effective for basketball players to improve repeated sprint and jump performance during competition, or withstand greater training load during practice sessions without any gastrointestinal side effects.


1998 ◽  
Vol 84 (1) ◽  
pp. 344-350 ◽  
Author(s):  
V. Strojnik ◽  
P. V. Komi

Strojnik, V., and P. V. Komi. Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J. Appl. Physiol. 84(1): 344–350, 1998.—To examine some possible sites of fatigue during short-lasting maximally intensive stretch-shortening cycle exercise, drop jumps on an inclined sledge apparatus were analyzed. Twelve healthy volunteers performed jumps until they were unable to maintain jumping height >90% of their maximum. After the workout, the increases in the blood lactate concentration and serum creatine kinase activation were statistically significant ( P < 0.001 and P < 0.05, respectively) but rather small in physiological terms. The major changes after the workout were as follows: the single twitch was characterized by smaller peak torque ( P < 0.05) and shorter time to peak ( P < 0.05) and half-relaxation time ( P < 0.01). The double-twitch torque remained at the same level ( P > 0.05), but with a steeper maximal slope of torque rise ( P < 0.05); during 20- and 100-Hz stimulation the torque declined (both P < 0.01) and the maximal voluntary torque changed nonsignificantly but with a smaller maximal slope of torque rise ( P < 0.01) and a higher activation level ( P < 0.05), accompanied by an increased electromyogram amplitude. These findings indicate that the muscle response after the short-lasting consecutive maximum jumps on the sledge apparatus may involve two distinct mechanisms acting in opposite directions: 1) The contractile mechanism seems to be potentiated through a shorter Ca2+ transient and faster cross-bridge cycling, as implied by twitch changes. 2) High-frequency action potential propagation shows an impairment, which is suggested as the possible dominant reason for fatigue in exercise of this type.


2020 ◽  
Vol 19 (1) ◽  
pp. 32
Author(s):  
Gustavo Taques Marczynski ◽  
Luís Carlos Zattar Coelho ◽  
Leonardo Emmanuel De Medeiros Lima ◽  
Rodrigo Pereira Da Silva ◽  
Dilmar Pinto Guedes Jr ◽  
...  

The aim of this study was to analyze the influence of two velocities of execution relative to blood lactate concentration in strength training exercise until the momentary concentric failure. Fifteen men (29.1 ± 5.9 years), trained, participated in the experiment. The volunteers performed three bench press sessions, with an interval of 48 hours between them. At the first session, individuals determined loads through the 10-12 RMs test. In the following two sessions, three series with 90 seconds of interval were performed, in the second session slow execution speed (cadence 3030) and later in the third session fast speed (cadence 1010). For statistical analysis, the Student-T test was used for an independent sample study and considered the value of probability (p) ≤ 0.05 statistically significant. By comparing the number of repetitions and time under tension of the two runs, all series compared to the first presented significant reductions (p < 0.05). The total work volume was higher with the fast speed (p < 0.05). The study revealed that rapid velocities (cadence 1010) present a higher concentration of blood lactate when compared to slow runs (cadence 3030). The blood lactate concentration, in maximum repetitions, is affected by the speed of execution.Keywords: resistance training, cadence, blood lactate.


1993 ◽  
Vol 75 (6) ◽  
pp. 2727-2733 ◽  
Author(s):  
K. H. McKeever ◽  
K. W. Hinchcliff ◽  
D. F. Gerken ◽  
R. A. Sams

Four mature horses were used to test the effects of two doses (50 and 200 mg) of intravenously administered cocaine on hemodynamics and selected indexes of performance [maximal heart rate (HRmax), treadmill velocity at HRmax, treadmill velocity needed to produce a blood lactate concentration of 4 mmol/l, maximal mixed venous blood lactate concentration, maximal treadmill work intensity, and test duration] measured during an incremental treadmill test. Both doses of cocaine increased HRmax approximately 7% (P < 0.05). Mean arterial pressure was 30 mmHg greater (P < 0.05) during the 4- to 7-m/s steps of the exercise test in the 200-mg trial. Neither dose of cocaine had an effect on the responses to exertion of right atrial pressure, right ventricular pressure, or maximal change in right ventricular pressure over time. Maximal mixed venous blood lactate concentration increased 41% (P < 0.05) with the 50-mg dose and 75% (P < 0.05) with the 200-mg dose during exercise. Administration of cocaine resulted in decreases (P < 0.05) in the treadmill velocity needed to produce a blood lactate concentration of 4 mmol/l from 6.9 +/- 0.5 and 6.8 +/- 0.9 m/s during the control trials to 4.4 +/- 0.1 m/s during the 200-mg cocaine trial. Cocaine did not alter maximal treadmill work intensity (P > 0.05); however, time to exhaustion increased by approximately 92 s (15%; P < 0.05) during the 200-mg trial.(ABSTRACT TRUNCATED AT 250 WORDS)


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 743
Author(s):  
Francesca Arfuso ◽  
Claudia Giannetto ◽  
Elisabetta Giudice ◽  
Francesco Fazio ◽  
Michele Panzera ◽  
...  

The current study aimed to investigate whether peripheral modulators of serotoninergic function and neurohumoral factors’ changes in athletic horses during an official jumping competition, and to evaluate their relationship with the physical performance of competing horses. From 7 Italian Saddle mares (6–9 years; mean body weight 440 ± 15 kg), performing the same standardized warm-up and jumping course during an official class, heart rate (HR) was monitored throughout the competition. Rectal temperature (RT) measurement, blood lactate and glucose concentration, serum tryptophan, leucine, valine, the tryptophan/branched-chain amino-acids ratio (Try/BCAAs), dopamine, prolactin, and non-esterified fatty acids (NEFAs) were assessed before the exercise event (T0), at the end of the competition stage (5 min ± 10 s following the cessation of the exercise, TPOST5), and 30 min after the end of competition (TPOST30). Highest HR values were recorded during the course and at the outbound (p < 0.0001); blood lactate concentration and RT increased after exercise with respect to the rest condition (p < 0.0001). Lower leucine and valine levels (p < 0.01), and higher tryptophan, Try/BCAAs ratio, and NEFAs values were found at TPOST5 and TPOST30 with respect to T0 (p < 0.0001). A higher prolactin concentration was found at TPOST5 and TPOST30 compared to T0 (p < 0.0001), whereas dopamine showed decreased values after exercise compared to rest (p < 0.0001). Statistically significant correlations among the peripheral indices of serotoninergic function, neurohumoral factors, and athletic performance parameters were found throughout the monitoring period. The findings provide indirect evidence that the serotoninergic system may be involved in fatigue during jumper exercise under a stressful situation, such as competition, in which, in addition to physical effort, athletic horses exhibit more passive behavior.


Sign in / Sign up

Export Citation Format

Share Document