scholarly journals The Effect of Orally Dosed Levagen+™ (palmitoylethanolamide) on Exercise Recovery in Healthy Males—A Double-Blind, Randomized, Placebo-Controlled Study

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 596 ◽  
Author(s):  
Alistair Mallard ◽  
David Briskey ◽  
Andrew Richards ◽  
Dean Mills ◽  
Amanda Rao

The aim of this study was to evaluate the effect of palmitoylethanolamide (PEA), a cannabimimetic compound and lipid messenger, on recovery from muscle damaging exercise. Twenty-eight healthy young male participants attended the laboratory four times on subsequent days. In the first visit, baseline characteristics were recorded before participants were randomized to consume either liquid PEA (167.5 mg Levagen+ with 832.5 mg maltodextrin) or a matched placebo (1 g maltodextrin) drink. Leg press exercise consisted of four sets at 80% of one repetition maximum followed by a performance set. Muscle soreness, thigh circumference, blood lactate concentration, biomarkers of muscle damage and inflammation, and transcription factor pathways were measured pre- and immediately post-exercise and again at 1, 2, 3, 24, 48, and 72 h post-exercise. The leg press exercise increased (p < 0.05) blood lactate concentration and induced muscle damage as evidenced by increased muscle soreness, thigh circumference, biomarkers of muscle damage, and concentrations of tumor necrosis factor-α. PEA reduced (p < 0.05) myoglobin and blood lactate concentrations and increased protein kinase B phosphorylation following exercise. Taken together, these results indicate PEA supplementation may aid in muscle recovery from repeat bouts of exercise performed within a short duration by reducing myoglobin and lactate concentration.

2020 ◽  
Vol 74 (1) ◽  
pp. 227-236
Author(s):  
Leandro Lodo ◽  
Alexandre Moreira ◽  
Reury Frank P Bacurau ◽  
Carol D Capitani ◽  
Wesley P Barbosa ◽  
...  

Abstract The aim of the present study was to evaluate the effects of 2 different intensities of resistance training (RT) bouts, performed with the equated total load lifted (TLL), on the acute responses of neurotrophic factors (NFs) (brain-derived neurotrophic factor [BDNF]; and nerve growth factor [NGF]), as well as on metabolic (lactate concentration) and hormonal (salivary cortisol concentration) responses. Thirty participants (males, 22.8 ± 2.3 years old, 177 ± 6.8 cm, 75.5 ± 7.9 kg, n = 15; and females, 22.2 ± 1.7 years, 163.7 ± 6.5 cm, 57 ± 7.6 kg, n = 15) performed 2 separate acute RT bouts with one week between trials. One bout consisted of 4 sets of 5 submaximal repetitions at 70% of 1RM and the other of 4 sets of 10 submaximal repetitions at 35% of 1RM for each exercise. Both RT bouts were conducted using the bench press and squat exercises. The TLL in each bout (determined by sets x repetitions x load [kg]) was equated. Serum BDNF, serum NGF, salivary cortisol, and blood lactate concentration were determined pre- and post-RT. No significant pre- to post-exercise increase in neurotrophic factors (p > 0.05; BDNF; effect size = 0.46 and NGF; effect size = 0.48) was observed for either of the RT bouts. A similar increase in blood lactate concentration was observed pre- to post-exercise for both RT bouts (p < 0.05). Cortisol increased similarly for both RT bouts, when compared to the resting day condition (p < 0.05). In conclusion, the results suggest that, despite differences in RT schemes, a similar acute neurotrophic, metabolic and hormonal response was observed when the TLL is equated.


Proceedings ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 1 ◽  
Author(s):  
Ioannis Kosmidis ◽  
Stefanos Nikolaidis ◽  
Alexandros Chatzis ◽  
Kosmas Christoulas ◽  
Thomas Metaxas ◽  
...  

Aim: Our previous studies have shown that the post-exercise urine lactate concentration is a reliable exercise biomarker under controlled post-exercise hydration conditions. However, the reliability of the urine lactate concentration has been examined only after brief maximal exercise. As a result, there is no information about the reliability of this biomarker after prolonged submaximal exercise. Thus, the aim of the present study was to examine the reliability of the urine lactate concentration after interval exercise of alternating intensity under controlled or ad libitum hydration during exercise. Material & Method: Twenty-eight physically active adults (16 men and 12 women) performed three identical 45-min running tests (2 sets of 22.5 min with 3 min rest interval) on the treadmill with alternating speed and inclination at 19–24 °C, spaced three days apart. The participants drank the same amount of water during exercise in two of tests and ad libitum in the other test, in random, counterbalanced order. Blood samples were collected before exercise and 1, 3, as well as 5 min post-exercise. The highest lactate value among the post-exercise samples of each individual was recorded as his/her peak post-exercise value. Urine samples were collected before exercise and 10 as well as 60 min post-exercise and the average value of the post-exercise samples was recorded. Blood and urine lactate were analyzed spectrophotometrically. Results: The peak post-exercise blood lactate concentration was 5.5 1.7 mmol/L (mean SD throughout) for men and 4.7 1.8 mmol/L for women. The post-exercise urine lactate concentration was 1.6 1.0 mmol/L for men and 1.5 1.0 mmol/L for women. The reliability of the blood lactate concentration at the three tests was high (ICC 077–0.88), being higher under controlled hydration. However, the reliability of the urine lactate concentration was low or non-significant (ICC 0.29–0.36). Conclusions: The urine lactate concentration after prolonged submaximal exercise was lower than the corresponding blood lactate concentration and showed unsatisfactory reliability regardless of the hydration pattern during exercise. Thus, it cannot be used as a biomarker for this kind of exercise.


2007 ◽  
Vol 17 (6) ◽  
pp. 507-520 ◽  
Author(s):  
Mary P. Miles ◽  
Sherri D. Pearson ◽  
Jan M. Andring ◽  
Jessy R. Kidd ◽  
Stella L. Volpe

The purpose of this investigation was to determine whether carbohydrate supplementation during the frst 2 d post exercise recovery influenced the inflammation (IL-6, C-reactive protein [CRP], and cortisol) and muscle-damage responses. Eight participants performed a high-force eccentric elbow-fexion exercise to induce muscle soreness and inflammation and then consumed carbohydrate (0.25 g·kg−1·h−1) or an equal volume of placebo during hours 0–12 and 24–36 post exercise in a double-blind, crossover protocol. Muscle soreness; mid brachial arm circumference; blood glucose, IL-6, CRP, cortisol, and creatine-kinase (CK) activity; and maximal force production were measured pre exercise and 4, 8, 12, 24, 48, and 120 h post exercise. Plasma IL-6 increased, F(5) = 5.27, P < 0.05, 8 h post exercise, with no difference between carbohydrate and placebo conditions. Changes in muscle soreness, arm circumference, strength, and serum CK activity were consistent with small amounts of muscle damage and did not differ between conditions. The authors conclude that carbohydrate supplementation during recovery from soreness-inducing exercise does not influence the delayed IL-6 response temporally linked to inflammation or indications of muscle damage. Thus, increased carbohydrate consumption at levels consistent with recommendations for replenishing glycogen stores does not impair or promote the immune and muscle responses.


2015 ◽  
Vol 10 (3) ◽  
pp. 388-395 ◽  
Author(s):  
Nuttaset Manimmanakorn ◽  
Jenny J. Ross ◽  
Apiwan Manimmanakorn ◽  
Samuel J.E. Lucas ◽  
Michael J. Hamlin

Purpose:To compare whole-body vibration (WBV) with traditional recovery protocols after a high-intensity training bout.Methods:In a randomized crossover study, 16 athletes performed 6 × 30-s Wingate sprints before completing either an active recovery (10 min of cycling and stretching) or WBV for 10 min in a series of exercises on a vibration platform. Muscle hemodynamics (assessed via near-infrared spectroscopy) were measured before and during exercise and into the 10-min recovery period. Blood lactate concentration, vertical jump, quadriceps strength, flexibility, rating of perceived exertion (RPE), muscle soreness, and performance during a single 30-s Wingate test were assessed at baseline and 30 and 60 min postexercise. A subset of participants (n = 6) completed a 3rd identical trial (1 wk later) using a passive 10-min recovery period (sitting).Results:There were no clear effects between the recovery protocols for blood lactate concentration, quadriceps strength, jump height, flexibility, RPE, muscle soreness, or single Wingate performance across all measured recovery time points. However, the WBV recovery protocol substantially increased the tissue-oxygenation index compared with the active (11.2% ± 2.4% [mean ± 95% CI], effect size [ES] = 3.1, and –7.3% ± 4.1%, ES = –2.1 for the 10 min postexercise and postrecovery, respectively) and passive recovery conditions (4.1% ± 2.2%, ES = 1.3, 10 min postexercise only).Conclusion:Although WBV during recovery increased muscle oxygenation, it had little effect in improving subsequent performance compared with a normal active recovery.


2019 ◽  
Vol 15 (3) ◽  
pp. 187-197 ◽  
Author(s):  
K. Kirsch ◽  
M. Düe ◽  
H. Holzhausen ◽  
C. Sandersen

Objective performance monitoring in eventing horses is rare as the implementation of standardised exercise tests is commonly perceived to interfere with the daily training routine. The validity of performance parameters derived from GPS data, heart rate (HR) and post exercise blood lactate concentration (LAC) measured during usual training sessions should therefore be evaluated. Velocity (V), HR and post exercise LAC recorded during 172 interval training sessions in 30 horses were retrospectively analysed. Linear regression of HR, averaged over retrospectively defined speed ranges, was used to calculate the V at HRs of 150 (V150) and 200 (V200) beats/min. A single exponential regression model, fitted to LAC in relation to HR values from the whole group of horses, was used to predict LAC for each horse’s individual HR value and to calculate the difference between measured and predicted LAC (LACdiff). Recovery HRs were derived from bi-exponential regression of HR decrease after exercise. Results were compared between different stages of training in the same horses and between horses categorised as superior (SP) and average performer (AP) according to their competition performance. V150 and V200 significantly increased with progressing training. SP had higher V150 and V200 values, lower LACdiff values and lower HRs after 1 min of recovery (HRR60s) than AP. Competition performance was positively correlated to V150 and V200 but negatively correlated to LACdiff and HRR60s. Regular monitoring of HR and LAC in response to interval training provided valuable indicators of performance. The results of this study may contribute to an increased applicability of routine performance monitoring in eventing horses.


2006 ◽  
Vol 31 (2) ◽  
pp. 144-149 ◽  
Author(s):  
Christopher B Scott

Four indirect estimations of energy expenditure were examined, (i) O2 debt, (ii) O2 deficit, (iii) blood lactate concentration, and (iv) excess CO2 production during and after 6 exercise durations (2, 4, 10, 15, 30, and 75 s) performed at 3 different intensities (50%, 100%, and 200% of VO2 max). Analysis of variance (ANOVA) was used to determine if significant differences existed among these 4 estimations of anaerobic energy expenditure and among 4 estimations of total energy expenditure (that included exercise O2 uptake and excess post-exercise oxygen consumption, or EPOC, measurements). The data indicate that estimations of anaerobic energy expenditure often differed for brief (2, 4, and 10 s) bouts of exercise, but this did not extend to total energy expenditure. At the higher exercise intensities with the longest durations O2 deficit, blood lactate concentration, and excess CO2 estimates of anaerobic and total energy expenditure revealed high variability; however, they were not statistically different. Moreover, they all differed significantly from the O2 debt interpretation (p < 0.05). It is concluded that as the contribution of rapid substrate-level ATP turnover with lactate production becomes larger, the greatest error in quantifying total energy expenditure is suggested to occur not with the method of estimation, but with the omission of a reasonable estimate of anaerobic energy expenditure.Key words: O2 deficit, lactate, O2 debt, EPOC, anaerobic energy expenditure.


2008 ◽  
Vol 104 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Marc Jubeau ◽  
Alessandro Sartorio ◽  
Pier Giulio Marinone ◽  
Fiorenza Agosti ◽  
Jacques Van Hoecke ◽  
...  

This study aimed to compare voluntary and stimulated exercise for changes in muscle strength, growth hormone (GH), blood lactate, and markers of muscle damage. Nine healthy men had two leg press exercise bouts separated by 2 wk. In the first bout, the quadriceps muscles were stimulated by biphasic rectangular pulses (75 Hz, duration 400 μs, on-off ratio 6.25–20 s) with current amplitude being consistently increased throughout 40 contractions at maximal tolerable level. In the second bout, 40 voluntary isometric contractions were performed at the same leg press force output as the first bout. Maximal voluntary isometric strength was measured before and after the bouts, and serum GH and blood lactate concentrations were measured before, during, and after exercise. Serum creatine kinase (CK) activity and muscle soreness were assessed before, immediately after, and 24, 48, and 72 h after exercise. Maximal voluntary strength decreased significantly ( P < 0.05) after both bouts, but the magnitude of the decrease was significantly ( P < 0.05) greater for the stimulated contractions (−22%) compared with the voluntary contractions (−9%). Increases in serum GH and lactate concentrations were significantly ( P < 0.05) larger after the stimulation compared with the voluntary exercise. Increases in serum CK activity and muscle soreness were also significantly ( P < 0.05) greater for the stimulation than voluntary exercise. It was concluded that a single bout of electrical stimulation exercise resulted in greater GH response and muscle damage than voluntary exercise.


Sign in / Sign up

Export Citation Format

Share Document