scholarly journals Evaluation of biological effectiveness of amino acid mixture as potential stimulator of synthetic processes in skeletal muscles

2018 ◽  
Vol 26 (2) ◽  
pp. 213-221
Author(s):  
Maxim V. Stogov ◽  
Elena A. Kireeva

Background. The ability of certain amino acids to stimulate anabolic processes in skeletal muscles has been proved by fundamental research, which makes it important to search for effective agents based on amino acids for stimulation of synthetic processes in skeletal muscles. Aim. To study the effect of oral administration of the original amino acid mixture (Larginine, Lmethionine, Lleucine, Lisoleucine) on protein, lipid and carbohydrate metabolism in skeletal muscles and liver of CBA male mice. Material and Methods. Two series of experiments were performed. In the first series (n=36), the animals were divided into three groups. In group 1 (n = 12), the mice received a diet balanced in protein and carbohydrates for two months. The animals of group 2 (n=12) were kept on a carbohydrate, proteindepleted isocaloric diet, in which wheat gliadin served as the protein source. Mice of group 3 (n=12) were kept on a diet similar to the second group, in which deficit of protein was compensated for with the tested mixture of Lamino acids. In the animals of the second series (n=36) acute liver failure was modeled by a single intraperitoneal injection of 20% carbon tetrachloride solution (CTC) in olive oil. Three days after the injection of CTC, all animals of the second series were randomly divided into three groups, depending on the received diet. Results. The results of the first series of experiments showed that compensation for protein deficiency with amino acid mixture reliably prevented excessive buildup of glycogen in muscles, led to a decrease in lipids in tissue, and also prevented reduction in the level of muscle protein. The results of the second series of experiments showed that intake of the amino acid mixture prevented loss of protein in muscles and supported the proteinsynthetic function of the liver. Conclusion. The study demonstrated that the tested mixture, when taken orally, can prevent disorders of proteincarbohydratelipid ratio in the muscles.

2018 ◽  
Vol 26 (2) ◽  
pp. 213-221
Author(s):  
Maxim V. Stogov ◽  
Elena A. Kireeva

Background. The ability of certain amino acids to stimulate anabolic processes in skeletal muscles has been proved by fundamental research, which makes it important to search for effective agents based on amino acids for stimulation of synthetic processes in skeletal muscles. Aim. To study the effect of oral administration of the original amino acid mixture (Larginine, Lmethionine, Lleucine, Lisoleucine) on protein, lipid and carbohydrate metabolism in skeletal muscles and liver of CBA male mice. Material and Methods. Two series of experiments were performed. In the first series (n=36), the animals were divided into three groups. In group 1 (n = 12), the mice received a diet balanced in protein and carbohydrates for two months. The animals of group 2 (n=12) were kept on a carbohydrate, proteindepleted isocaloric diet, in which wheat gliadin served as the protein source. Mice of group 3 (n=12) were kept on a diet similar to the second group, in which deficit of protein was compensated for with the tested mixture of Lamino acids. In the animals of the second series (n=36) acute liver failure was modeled by a single intraperitoneal injection of 20% carbon tetrachloride solution (CTC) in olive oil. Three days after the injection of CTC, all animals of the second series were randomly divided into three groups, depending on the received diet. Results. The results of the first series of experiments showed that compensation for protein deficiency with amino acid mixture reliably prevented excessive buildup of glycogen in muscles, led to a decrease in lipids in tissue, and also prevented reduction in the level of muscle protein. The results of the second series of experiments showed that intake of the amino acid mixture prevented loss of protein in muscles and supported the proteinsynthetic function of the liver. Conclusion. The study demonstrated that the tested mixture, when taken orally, can prevent disorders of proteincarbohydratelipid ratio in the muscles.


1997 ◽  
Vol 273 (1) ◽  
pp. E122-E129 ◽  
Author(s):  
G. Biolo ◽  
K. D. Tipton ◽  
S. Klein ◽  
R. R. Wolfe

Six normal untrained men were studied during the intravenous infusion of a balanced amino acid mixture (approximately 0.15 g.kg-1.h-1 for 3 h) at rest and after a leg resistance exercise routine to test the influence of exercise on the regulation of muscle protein kinetics by hyperaminoacidemia. Leg muscle protein kinetics and transport of selected amino acids (alanine, phenylalanine, leucine, and lysine) were isotopically determined using a model based on arteriovenous blood samples and muscle biopsy. The intravenous amino acid infusion resulted in comparable increases in arterial amino acid concentrations at rest and after exercise, whereas leg blood flow was 64 +/- 5% greater after exercise than at rest. During hyperaminoacidemia, the increases in amino acid transport above basal were 30-100% greater after exercise than at rest. Increases in muscle protein synthesis were also greater after exercise than at rest (291 +/- 42% vs. 141 +/- 45%). Muscle protein breakdown was not significantly affected by hyperminoacidemia either at rest or after exercise. We conclude that the stimulatory effect of exogenous amino acids on muscle protein synthesis is enhanced by prior exercise, perhaps in part because of enhanced blood flow. Our results imply that protein intake immediately after exercise may be more anabolic than when ingested at some later time.


1999 ◽  
Vol 277 (3) ◽  
pp. E513-E520 ◽  
Author(s):  
Elena Volpi ◽  
Bettina Mittendorfer ◽  
Steven E. Wolf ◽  
Robert R. Wolfe

Muscle protein synthesis and breakdown and amino acid transport were measured in 7 healthy young (30 ± 2 yr) and 8 healthy elderly (71 ± 2 yr) volunteers in the postabsorptive state and during the oral administration of an amino acid mixture withl-[ ring-2H5]phenylalanine infusion, femoral artery and vein catheterization, and muscle biopsies. Phenylalanine first-pass splanchnic extraction was measured by addingl-[ ring-13C6]phenylalanine to the mixture. In the postabsorptive state, no differences in muscle amino acid kinetics were detected between young and elderly volunteers. Phenylalanine first-pass splanchnic extraction was significantly higher in the elderly ( P < 0.003) during ingestion of amino acids, but the delivery to the leg increased to the same extent in both groups. Phenylalanine transport into the muscle, muscle protein synthesis, and net balance increased significantly ( P < 0.01) and similarly in both the young and the elderly. We conclude that, despite an increased splanchnic first-pass extraction, muscle protein anabolism can be stimulated by oral amino acids in the elderly as well as in the young.


2015 ◽  
Vol 114 (11) ◽  
pp. 1845-1851 ◽  
Author(s):  
Yean Yean Soong ◽  
Joseph Lim ◽  
Lijuan Sun ◽  
Christiani Jeyakumar Henry

AbstractConsumption of high glycaemic index (GI) and glycaemic response (GR) food such as white rice has been implicated in the development of type 2 diabetes. Previous studies have reported the ability of individual amino acids to reduce GR of carbohydrate-rich foods. Because of the bitter flavour of amino acids, they have rarely been used to reduce GR. We now report the use of a palatable, preformed amino acid mixture in the form of essence of chicken. In all, sixteen healthy male Chinese were served 68 or 136 ml amino acid mixture together with rice, or 15 or 30 min before consumption of white rice. Postprandial blood glucose and plasma insulin concentrations were measured at fasting and every 15 min after consumption of the meal until 60 min after the consumption of the white rice. Subsequent blood samples were taken at 30-min intervals until 210 min. The co-ingestion of 68 ml of amino acid mixture with white rice produced the best results in reducing the peak blood glucose and GR of white rice without increasing the insulinaemic response. It is postulated that amino acid mixtures prime β-cell insulin secretion and peripheral tissue uptake of glucose. The use of ready-to-drink amino acid mixtures may be a useful strategy for lowering the high-GI rice diets consumed in Asia.


1980 ◽  
Vol 239 (6) ◽  
pp. G493-G496 ◽  
Author(s):  
E. J. Feldman ◽  
M. I. Grossman

Using intragastric titration in dogs with gastric fistulas, dose-response studies were carried out with liver extract and with a mixture of amino acids that matched the free amino acids found in liver extract. All solutions were adjusted to pH 7.0 and osmolality to 290 mosmol x kg-1. Doses are expressed as the sum of the concentrations of all free amino acids. At each dose studied (free amino acid concentration: 2.8, 5.6, 11, 23, and 45 mM), acid secretion in response to the free amino acid mixture was not significantly different from that of liver extract. The peak response to both liver extract and the free amino acid mixture occurred with the 23-mM dose and represented about 60% of the maximal response to histamine. The serum concentrations of gastrin after liver extract and the amino acid mixture were not significantly different. It is concluded that in dogs with gastric fistula, gastric acid secretion and release of gastrin were not significantly different in response to liver extract and to a mixture of amino acids that simulated the free amino acid content of liver extract.


1994 ◽  
Vol 267 (6) ◽  
pp. E877-E885 ◽  
Author(s):  
I. Tauveron ◽  
D. Larbaud ◽  
C. Champredon ◽  
E. Debras ◽  
S. Tesseraud ◽  
...  

The experiment was carried out to clarify the roles of insulin and amino acids on protein synthesis in fed lactating goats (30 days postpartum). Protein synthesis in the liver and various skeletal muscles was assessed after an intravenous injection of a large dose of unlabeled valine containing a tracer dose of L-[2,3,4-3H]valine. The animals were divided into three groups. Group I was infused with insulin (1.7 mumol/min) for 2.5 h under glucose, potassium, and amino acid replacement. Group A was infused with an amino acid mixture to create stable hyperaminoacidemia for 2.5 h. Group C animals were controls. The fractional synthesis rates (FSR) were 31.5 +/- 2.2, 6.5 +/- 0.4, 4.3 +/- 0.8, 4.0 +/- 1.2, 3.9 +/- 1.2, and 3.6 +/- 0.4%/day (SD) in liver, masseter, diaphragm, anconeus, semitendinosus, and longissimus dorsi, respectively, for group C. Neither hyperinsulinemia in group I nor hyperaminoacidemia in group A had not affected by hyperinsulinemia but was stimulated by hyperaminoacidemia (+30%, P < 0.05). In contrast to previous experiments in which a labeled amino acid was constantly infused, this study revealed a stimulating effect of amino acids on protein synthesis in the liver but not in skeletal muscles. As previously observed in studies with the constant-infusion method, insulin had no effect on protein synthesis.


PEDIATRICS ◽  
1988 ◽  
Vol 82 (4) ◽  
pp. 680-680
Author(s):  
NIELS C. R. RÄIHÄ

To the Editor.— In a recent paper in Pediatrics, Heird et al1 reported their evaluation of the use of a new amino acid mixture for parenteral nutrition in low birth weight infants. On the basis of their results the authors made the following statement: "These observations refute the concept that the metabolic capacity of LBW infants for amino acids is limited in comparison to that of term infants, older infants, and chi1dren."1(p49) Such a conclusion is not justified on the basis of the presented data.


1982 ◽  
Vol 242 (1) ◽  
pp. E53-E58
Author(s):  
J. G. Yovos ◽  
T. M. O'Dorisio ◽  
T. N. Pappas ◽  
S. Cataland ◽  
F. B. Thomas ◽  
...  

Insulin release following intravenous administration of an amino acid solution with and without a simultaneous infusion of varying amounts of porcine gastric inhibitory polypeptide (GIP) was studied in dogs. Group I received a 10-amino acid mixture (300 mosmol/kg iv) at 16.6 ml/min for 1 h; group II, amino acid mixture plus 0.5 micrograms.kg-1.h-1 porcine GIP; group III, amino acid mixture plus 1.0 micrograms.kg-1.h-1 of GIP; group IV (a and b) received either 0.5 or 1.0 micrograms.kg-1.h-1 of GIP alone. Compared to group I, groups II and III had a greater insulin response during the first 30 min of the infusion. Group] IV (a and b) showed no insulin release. Glucose concentrations showed no significant change in all groups. From these results, it is concluded that insulin release after intravenous infusion of an amino acid mixture plus GIP is greater than after amino acids or GIP alone. It appears that this effect is more pronounced in the early phase of insulin release.


1962 ◽  
Vol 202 (3) ◽  
pp. 407-414 ◽  
Author(s):  
Rapier H. McMenamy ◽  
William C. Shoemaker ◽  
Jonas E. Richmond ◽  
David Elwyn

Dog livers were perfused in situ for periods up to 6 hr with dog blood recycled through a pump-oxygenator. An amino acid mixture was administered for 90 min. Concentrations of amino acids were determined at intervals of 30 min or more. Rates of uptake and metabolism were calculated. After the start of perfusion, there is a fall in most plasma amino acid concentrations and a reciprocal rise in liver amino acids. Addition of amino acids causes a sharp rise in plasma amino acids. There is a rapid uptake of most of the amino acids by liver, although the concentrations of amino acids in liver fail to rise appreciably. Notable exceptions are valine, leucine, and isoleucine. Uptake of amino acids stimulates: a) an increase in the rate of synthesis of urea which ultimately accounts for 90% of the metabolized amino acids; b) a net synthesis of ornithine; and c) net noncatabolic metabolism of amino acids which may in part be protein synthesis. The results support the view that the liver temporarily stores a part of ingested amino acids as proteins, and subsequently makes them available to other organs.


Sign in / Sign up

Export Citation Format

Share Document