scholarly journals Wearable upper limb motion assist robot for eating activity

2020 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Uzair Kashtwari ◽  
Norsinnira Zainul Azlan ◽  
Ifrah Shahdad

Many people all around the world are suffering from various types of disabilities and need to depend on others to perform activities of daily living. One of the essential daily living activities is eating. The disabled people should be able to eat their food independently at any time and place, without relying on the caregivers. This paper presents the development of a new wearable upper limb motion assist robot for helping the disabled to eat by themselves. The motion assists robot consists of two degrees of freedom (DOF) movement, focusing on the two most crucial upper limb movements in eating activity, which is the elbow flexion/extension and forearm pronation/supination. A light-weight material was used for the fabrication of the wearable motion assist robot, and Arduino was utilized as the microcontroller. The originality of the study was in terms of the design, operational sequence setting, and kinematic analysis of the wearable upper limb motion assist robot that was explicitly focusing on eating activity. The resulted prototype was portable, compact, light in weight, simple and low cost. The experimental results have proven that the proposed wearable upper limb motion assist robot for eating activity was successful in helping the users to perform the main upper extremity motions in eating. The success rate of the proposed system was 80%, and it took 6 seconds for the system to complete one feeding cycle.

Author(s):  
Anne Schwarz ◽  
Miguel M. C. Bhagubai ◽  
Saskia H. G. Nies ◽  
Jeremia P. O. Held ◽  
Peter H. Veltink ◽  
...  

Abstract Background Upper limb kinematic assessments provide quantifiable information on qualitative movement behavior and limitations after stroke. A comprehensive characterization of spatiotemporal kinematics of stroke subjects during upper limb daily living activities is lacking. Herein, kinematic expressions were investigated with respect to different movement types and impairment levels for the entire task as well as for motion subphases. Method Chronic stroke subjects with upper limb movement impairments and healthy subjects performed a set of daily living activities including gesture and grasp movements. Kinematic measures of trunk displacement, shoulder flexion/extension, shoulder abduction/adduction, elbow flexion/extension, forearm pronation/supination, wrist flexion/extension, movement time, hand peak velocity, number of velocity peaks (NVP), and spectral arc length (SPARC) were extracted for the whole movement as well as the subphases of reaching distally and proximally. The effects of the factors gesture versus grasp movements, and the impairment level on the kinematics of the whole task were tested. Similarities considering the metrics expressions and relations were investigated for the subphases of reaching proximally and distally between tasks and subgroups. Results Data of 26 stroke and 5 healthy subjects were included. Gesture and grasp movements were differently expressed across subjects. Gestures were performed with larger shoulder motions besides higher peak velocity. Grasp movements were expressed by larger trunk, forearm, and wrist motions. Trunk displacement, movement time, and NVP increased and shoulder flexion/extension decreased significantly with increased impairment level. Across tasks, phases of reaching distally were comparable in terms of trunk displacement, shoulder motions and peak velocity, while reaching proximally showed comparable expressions in trunk motions. Consistent metric relations during reaching distally were found between shoulder flexion/extension, elbow flexion/extension, peak velocity, and between movement time, NVP, and SPARC. Reaching proximally revealed reproducible correlations between forearm pronation/supination and wrist flexion/extension, movement time and NVP. Conclusion Spatiotemporal differences between gestures versus grasp movements and between different impairment levels were confirmed. The consistencies of metric expressions during movement subphases across tasks can be useful for linking kinematic assessment standards and daily living measures in future research and performing task and study comparisons. Trial registration: ClinicalTrials.gov Identifier NCT03135093. Registered 26 April 2017, https://clinicaltrials.gov/ct2/show/NCT03135093.


2014 ◽  
Vol 601 ◽  
pp. 163-166 ◽  
Author(s):  
Mirela Toth-Taşcău ◽  
Dan Ioan Stoia ◽  
Flavia Bălănean

The main objective of the study consists in determination of the most appropriate sampling rate of the measurements in instrumented kinematic analysis of the upper limb movements. The measuring system involved in the study is Zebris CMS-HS Measuring System, whose configuration was defined by ultrasound markers attached to specific body sites. The sampling rate interval was set from 10 to 25 Hz, according to the system’s range of frequencies. The kinematic parameters which have been analyzed are shoulder and elbow flexion-extension and shoulder abduction-adduction. A comparative kinematical analysis of the angle variations of flexion-extension and abduction-adduction in shoulder joint and flexion-extension in elbow joint was performed for both left and right upper limbs at each sampling rate.


2007 ◽  
Vol 04 (03) ◽  
pp. 607-624 ◽  
Author(s):  
KAZUO KIGUCHI

This paper presents the current state of research into power-assist exoskeletons for the upper limb. The assist of the upper limb is important for physically weak persons in daily activities, since upper-limb motion is involved in many important motions in daily living. The most important criterion is that power-assist exoskeletons assist the user's motion automatically in accordance with the user's motion intentions. Electromyogram (EMG) signals in which the user's motion intention is reflected could provide vital real-time information to facilitate accurate control of the power-assist exoskeleton in accordance with the user's motion intentions. A four degree-of-freedom active exoskeleton that assists human upper-limb motion (shoulder vertical flexion/extension, shoulder horizontal flexion/extension, elbow flexion/extension, and forearm supination/pronation) is also proposed.


2021 ◽  
Vol 12 (1) ◽  
pp. 639-648
Author(s):  
Qiaoling Meng ◽  
Zongqi Jiao ◽  
Hongliu Yu ◽  
Weisheng Zhang

Abstract. The target of this paper is to design a lightweight upper limb rehabilitation robot with space training based on end-effector configuration and to evaluate the performance of the proposed mechanism. In order to implement this purpose, an equivalent mechanism to the human being upper limb is proposed before the design. Then, a 4 degrees of freedom (DOF) end-effector-based upper limb rehabilitation robot configuration is designed to help stroke patients perform space rehabilitation training of the shoulder flexion/extension and adduction/abduction and elbow flexion/extension. Thereafter, its kinematical model is established together with the proposed equivalent upper limb mechanism. The Monte Carlo method is employed to establish their workspace. The results show that the overlap of the workspace between the proposed mechanism and the equivalent mechanism is 96.61 %. In addition, this paper also constructs a human–machine closed-chain mechanism to analyze the flexibility of the mechanism. According to the relative manipulability and manipulability ellipsoid, the highly flexible area of the mechanism accounts for 67.6 %, and the mechanism is far away from the singularity on the drinking trajectory. In the end, the single-joint training experiments and a drinking water training trajectory planning experiment are developed and the prototype is manufactured to verify it.


2020 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Alessandro Scano ◽  
Robert Mihai Mira ◽  
Pietro Cerveri ◽  
Lorenzo Molinari Tosatti ◽  
Marco Sacco

In the field of motion analysis, the gold standard devices are marker-based tracking systems. Despite being very accurate, their cost, stringent working environments, and long preparation time make them unsuitable for small clinics as well as for other scenarios such as industrial application. Since human-centered approaches have been promoted even outside clinical environments, the need for easy-to-use solutions to track human motion is topical. In this context, cost-effective devices, such as RGB-Depth (RBG-D) cameras have been proposed, aiming at a user-centered evaluation in rehabilitation or of workers in industry environment. In this paper, we aimed at comparing marker-based systems and RGB-D cameras for tracking human motion. We used a Vicon system (Vicon Motion Systems, Oxford, UK) as a gold standard for the analysis of accuracy and reliability of the Kinect V2 (Microsoft, Redmond, WA, USA) in a variety of gestures in the upper limb workspace—targeting rehabilitation and working applications. The comparison was performed on a group of 15 adult healthy subjects. Each subject had to perform two types of upper-limb movements (point-to-point and exploration) in three workspace sectors (central, right, and left) that might be explored in rehabilitation and industrial working scenarios. The protocol was conceived to test a wide range of the field of view of the RGB-D device. Our results, detailed in the paper, suggest that RGB-D sensors are adequate to track the upper limb for biomechanical assessments, even though relevant limitations can be found in the assessment and reliability of some specific degrees of freedom and gestures with respect to marker-based systems.


2015 ◽  
Vol 17 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Juan Francisco Ayala Lozano ◽  
Guillermo Urriolagoitia Sosa ◽  
Beatriz Romero Ángeles ◽  
Christopher René Torres San-Miguel ◽  
Luis Antonio Aguilar-Pérez ◽  
...  

<strong>Título en ingles: Mechanical design of an exoskeleton for upper limb rehabilitation</strong><p><strong>Título corto: Diseño mecánico de un exoesqueleto</strong></p><p><strong>Resumen:</strong> El ritmo de vida actual, tanto sociocultural como tecnológico, ha desembocado en un aumento de enfermedades y padecimientos que afectan las capacidades físico-motrices de los individuos. Esto ha originado el desarrollo de prototipos para auxiliar al paciente a recuperar la movilidad y la fortaleza de las extremidades superiores afectadas. El presente trabajo aborda el diseño de una estructura mecánica de un exoesqueleto con 4 grados de libertad para miembro superior. La cual tiene como principales atributos la capacidad de ajustarse a la antropometría del paciente mexicano (longitud del brazo, extensión del antebrazo, condiciones geométricas de la espalda y altura del paciente). Se aplicó el método <em>BLITZ QFD</em> para obtener el diseño conceptual óptimo y establecer adecuadamente las condiciones de carga de servicio. Por lo que, se definieron 5 casos de estudio cuasi-estáticos e implantaron condiciones para rehabilitación de los pacientes. Asimismo, mediante el Método de Elemento Finito (MEF) se analizaron los esfuerzos y deformaciones a los que la estructura está sometida durante la aplicación de los agentes externos de servicio. Los resultados presentados en éste trabajo exhiben una nueva propuesta para la rehabilitación de pacientes con problemas de movilidad en miembro superior. Donde el equipo propuesto permite la rehabilitación del miembro superior apoyado en 4 grados de libertad (tres grados de libertad en el hombro y uno en el codo), el cual es adecuado para realizar terapias activas y pasivas. Asimismo, es un dispositivo que está al alcance de un mayor porcentaje de la población por su bajo costo y fácil desarrollo en la fabricación.</p><p><strong>Palabras clave:</strong> MEF, Blitz QFD, exoesqueletos, diseño mecánico.</p><p><strong>Abstract</strong>: The pace of modern life, both socio-cultural and technologically, has led to an increase of diseases and conditions that affect the physical-motor capabilities of persons. This increase has originated the development of prototypes to help patients to regain mobility and strength of the affected upper limb. This work, deals with the mechanical structure design of an exoskeleton with 4 degrees freedom for upper limb. Which has the capacity to adjust to the Mexican patient anthropometry (arm length, forearm extension, geometry conditions of the back and the patient’s height) BLITZ QFD method was applied to establish the conceptual design and loading service conditions on the structure.  So, 5 quasi-static cases of study were defined and conditions for patient rehabilitation were subjected. Also by applying the finite element method the structure was analyzed due to service loading. The results presented in this work, show a new method for patient rehabilitation with mobility deficiencies in the upper limb. The proposed new design allows the rehabilitation of the upper limb under 4 degrees of freedom (tree degrees of freedom at shoulder and one at the elbow), which is perfect to perform active and passive therapy. Additionally, it is an equipment of low cost, which can be affordable to almost all the country population.</p><p><strong>Key words:</strong> FEM, Blitz QFD, exoskeletons, mechanical design<strong>.</strong></p><p><strong>Recibido:</strong> agosto 20 de 2014   <strong>Aprobado:</strong> marzo 26 de 2015</p>


Robotica ◽  
2014 ◽  
Vol 33 (1) ◽  
pp. 19-39 ◽  
Author(s):  
M. H. Rahman ◽  
M. J. Rahman ◽  
O. L. Cristobal ◽  
M. Saad ◽  
J. P. Kenné ◽  
...  

SUMMARYTo assist physically disabled people with impaired upper limb function, we have developed a new 7-DOF exoskeleton-type robot named Motion Assistive Robotic-Exoskeleton for Superior Extremity (ETS-MARSE) to ease daily upper limb movements and to provide effective rehabilitation therapy to the superior extremity. The ETS-MARSE comprises a shoulder motion support part, an elbow and forearm motion support part, and a wrist motion support part. It is designed to be worn on the lateral side of the upper limb in order to provide naturalistic movements of the shoulder (vertical and horizontal flexion/extension and internal/external rotation), elbow (flexion/extension), forearm (pronation/supination), and wrist joint (radial/ulnar deviation and flexion/extension). This paper focuses on the modeling, design, development, and control of the ETS-MARSE. Experiments were carried out with healthy male human subjects in whom trajectory tracking in the form of passive rehabilitation exercises (i.e., pre-programmed trajectories recommended by a therapist/clinician) were carried out. Experimental results show that the ETS-MARSE can efficiently perform passive rehabilitation therapy.


Author(s):  
Aliakbar Alamdari ◽  
Venkat Krovi

This paper examines the design, analysis and control of a novel hybrid articulated-cable parallel platform for upper limb rehabilitation in three dimensional space. The proposed lightweight, low-cost, modular reconfigurable parallel-architecture robotic device is comprised of five cables and a single linear actuator which connects a six degrees-of-freedom moving platform to a fixed base. This novel design provides an attractive architecture for implementation of a home-based rehabilitation device as an alternative to bulky and expensive serial robots. The manuscript first examines the kinematic analysis prior to developing the dynamic equations via the Newton-Euler formulation. Subsequently, different spatial motion trajectories are prescribed for rehabilitation of subjects with arm disabilities. A low-level trajectory tracking controller is developed to achieve the desired trajectory performance while ensuing that the unidirectional tensile forces in the cables are maintained. This is now evaluated via a simulation case-study and the development of a physical testbed is underway.


Author(s):  
Patrick Aubin ◽  
Kelsey Petersen ◽  
Hani Sallum ◽  
Conor Walsh ◽  
Annette Correia ◽  
...  

Purpose – Pediatric disorders, such as cerebral palsy and stroke, can result in thumb-in-palm deformity greatly limiting hand function. This not only limits children's ability to perform activities of daily living but also limits important motor skill development. Specifically, the isolated orthosis for thumb actuation (IOTA) is 2 degrees of freedom (DOF) thumb exoskeleton that can actuate the carpometacarpal (CMC) and metacarpophalangeal (MCP) joints through ranges of motion required for activities of daily living. The paper aims to discuss these issues. Design/methodology/approach – IOTA consists of a lightweight hand-mounted mechanism that can be secured and aligned to individual wearers. The mechanism is actuated via flexible cables that connect to a portable control box. Embedded encoders and bend sensors monitor the 2 DOF of the thumb and flexion/extension of the wrist. A linear force characterization was performed to test the mechanical efficiency of the cable-drive transmission and the output torque at the exoskeletal CMC and MCP joints was measured. Findings – Using this platform, a number of control modes can be implemented that will enable the device to be controlled by a patient to assist with opposition grasp and fine motor control. Linear force and torque studies showed a maximum efficiency of 44 percent, resulting in a torque of 2.39±1.06 in.-lbf and 0.69±0.31 in.-lbf at the CMC and MCP joints, respectively. Practical implications – The authors envision this at-home device augmenting the current in-clinic and at-home therapy, enabling telerehabilitation protocols. Originality/value – This paper presents the design and characterization of a novel device specifically designed for pediatric grasp telerehabilitation to facilitate improved functionality and somatosensory learning.


Sign in / Sign up

Export Citation Format

Share Document