Identifying Reduced-Order Models for Large Nonlinear Systems with Arbitrary Initial Conditions and Multiple Outputs using Prony Signal Analysis

Author(s):  
D. A. Pierre ◽  
D. J. Trudnowski ◽  
J. F. Hauer
2004 ◽  
Vol 126 (4) ◽  
pp. 496-513 ◽  
Author(s):  
Deman Tang ◽  
Earl H. Dowell

Dynamic numerical simulation of a protein-ligand molecular chain connected to a moving atomic force microscope (AFM) has been studied. A sinusoidal base excitation of the cantilevered beam of the AFM is considered in some detail. A comparison between results for a single molecule and those for multiple molecules has been made. For a small number of molecules, multiple stable static equilibrium positions are observed and chaotic behavior may be generated via a period-doubling cascade for harmonic base excitation of the AFM. For many molecules in the chain, only a single static equilibrium position exists. To enable these calculations, reduced-order (dynamic) models are constructed for fully linear, combined linear/nonlinear and fully nonlinear systems. Several distinct reduced-order models have been developed that offer the option of increased computational efficiency at the price of greater effort to construct the particular reduced-order model. The agreement between the original and reduced-order models (ROM) is very good even when only one mode is included in the ROM for either the fully linear or combined linear/nonlinear systems provided the excitation frequency is lower than the fundamental natural frequency of the linear system. The computational advantage of the reduced-order model is clear from the results presented.


Author(s):  
David B. Segala ◽  
David Chelidze

The need for reduced order models (ROMs) has become considerable higher with the increasing technological advances that allows one to model complex dynamical systems. When using ROMs, the following two questions always arise: 1) “What is the lowest dimensional ROM?” and 2) “How well does the ROM capture the dynamics of the full scale system model?” This paper considers the newly developed concepts the authors refer to as subspace robustness — the ROM is valid over a range of initial conditions, forcing functions, and system parameters — and dynamical consistency — the ROM embeds the nonlinear manifold — which quanitatively answers each question. An eighteen degree-of-freedom pinned-pinned beam which is supported by two nonlinear springs is forced periodically and stochastically for building ROMs. Smooth and proper orthogonal decompositions (SOD and POD, respectively) based ROMs are dynamically consistent in four or greater dimensions. In the strictest sense POD-based ROMs are not considered coherent whereas, SOD-based ROMs are coherent in roughly five dimesions and greater. Is is shown that in the periodically forced case, the full scale dynamics are captured in a five-dimensional POD and SOD-based ROM. For the randomly forced case, POD and SOD-based ROMs need three dimensions but SOD captures the dynamics better in a lower-dimensional space. When the ROM is developed from a different set of initial conditions and forcing values, SOD outperforms POD in periodic forcing case and are equal in the random forcing case.


Author(s):  
Sangram Redkar ◽  
S. C. Sinha

In this work, the basic problem of order reduction nonlinear systems subjected to an external periodic excitation is considered. This problem deserves attention because the modes that interact (linearly or nonlinearly) with the external excitation dominate the response. A linear approach like the Guyan reduction does not always guarantee accurate results, particularly when nonlinear interactions are strong. In order to overcome limitations of the linear approach, a nonlinear order reduction methodology through a generalization of the invariant manifold technique is proposed. Traditionally, the invariant manifold techniques for unforced problems are extended to the forced problems by ‘augmenting’ the state space, i.e., forcing is treated as an additional degree of freedom and an invariant manifold is constructed. However, in the approach suggested here a nonlinear time-dependent relationship between the dominant and the non-dominant states is assumed and the dimension of the state space remains the same. This methodology not only yields accurate reduced order models but also explains the consequences of various ‘primary’ and ‘secondary resonances’ present in the system. Following this approach, various ‘reducibility conditions’ are obtained that show interactions among the eigenvalues, the nonlinearities and the external excitation. One can also recover all ‘resonance conditions’ commonly obtained via perturbation or averaging techniques. These methodologies are applied to some typical problems and results for large-scale and reduced order models are compared. It is anticipated that these techniques will provide a useful tool in the analysis and control of large-scale externally excited nonlinear systems.


Author(s):  
Sangram Redkar ◽  
S. C. Sinha

In this work, some techniques for order reduction of nonlinear systems with periodic coefficients subjected to external periodic excitations are presented. The periodicity of the linear terms is assumed to be non-commensurate with the periodicity of forcing vector. The dynamical equations of motion are transformed using the Lyapunov-Floquet (L-F) transformation such that the linear parts of the resulting equations become time-invariant while the forcing and/or nonlinearity takes the form of quasiperiodic functions. The techniques proposed here; construct a reduced order equivalent system by expressing the non-dominant states as time-varying functions of the dominant (master) states. This reduced order model preserves stability properties and is easier to analyze, simulate and control since it consists of relatively small number of states in comparison with the large scale system. Specifically, two methods are outlined to obtain the reduced order model. First approach is a straightforward application of linear method similar to the ‘Guyan reduction’, the second novel technique proposed here, utilizes the concept of ‘invariant manifolds’ for the forced problem to construct the fundamental solution. Order reduction approach based on invariant manifold technique yields unique ‘reducibility conditions’. If these ‘reducibility conditions’ are satisfied only then an accurate order reduction via ‘invariant manifold’ is possible. This approach not only yields accurate reduced order models using the fundamental solution but also explains the consequences of various ‘primary’ and ‘secondary resonances’ present in the system. One can also recover ‘resonance conditions’ associated with the fundamental solution which could be obtained via perturbation techniques by assuming weak parametric excitation. This technique is capable of handing systems with strong parametric excitations subjected to periodic and quasi-periodic forcing. These methodologies are applied to a typical problem and results for large-scale and reduced order models are compared. It is anticipated that these techniques will provide a useful tool in the analysis and control system design of large-scale parametrically excited nonlinear systems subjected to external periodic excitations.


Author(s):  
Sangram Redkar ◽  
S. C. Sinha

In this work, some techniques for order reduction of nonlinear systems involving periodic/quasiperiodic coefficients are presented. The periodicity of the linear terms is assumed non-commensurate with the periodicity of either the nonlinear terms or the forcing vector. The dynamical evolution equations are transformed using the Lyapunov-Floquet (L-F) transformation such that the linear parts of the resulting equations become time-invariant while the nonlinear parts and forcing take the form of quasiperiodic functions. The techniques proposed here construct a reduced order equivalent system by expressing the non-dominant states as time-modulated functions of the dominant (master) states. This reduced order model preserves stability properties and is easier to analyze, simulate and control since it consists of relatively small number of states. Three methods are proposed to carry out this model order reduction (MOR). First type of MOR technique is a linear method similar to the ‘Guyan reduction’, the second technique is a nonlinear projection method based on singular perturbation while the third method utilizes the concept of ‘quasiperiodic invariant manifold’. Order reduction approach based on invariant manifold technique yields a unique ‘generalized reducibility condition’. If this ‘reducibility condition’ is satisfied only then an accurate order reduction via invariant manifold is possible. Next, the proposed methodologies are extended to solve the forced problem. All order reduction approaches except the invariant manifold technique can be applied in a straightforward way. The invariant manifold formulation is modified to take into account the effects of forcing and nonlinear coupling. This approach not only yields accurate reduced order models but also explains the consequences of various ‘primary’ and ‘secondary resonances’ present in the system. One can also recover all ‘resonance conditions’ obtained via perturbation techniques by assuming weak parametric excitation. This technique is capable of handing systems with strong parametric excitations subjected to periodic and quasi-periodic forcing. These methodologies are applied to some typical problems and results for large-scale and reduced order models are compared. It is anticipated that these techniques will provide a useful tool in the analysis and control system design of large-scale parametrically excited nonlinear systems.


Author(s):  
Sangram Redkar ◽  
S. C. Sinha

In this work, the basic problem of order reduction of nonlinear systems subjected to an external periodic excitation is considered. This problem deserves special attention because modes that interact (linearly or nonlinearly) with external excitation dominate the response. These dominant modes are identified and chosen as the “master” modes to be retained in the reduction process. The simplest idea could be to use a linear approach such as the Guyan reduction and choose those modes whose natural frequencies are close to that of external excitation as the master modes. However, this technique does not guarantee accurate results when nonlinear interactions are strong and a nonlinear approach must be adopted. Recently, the invariant manifold technique has been extended to forced problems by “augmenting” the state space, i.e., forcing is treated as an additional state and an invariant manifold is constructed. However, this process does not provide a clear picture of possible resonances and conditions under which an order reduction is possible. In a direct innovative approach suggested here, a nonlinear time-dependent relationship between the dominant and nondominant states is assumed and the dimension of the state space remains the same. This methodology not only yields accurate reduced order models but also explains the consequences of various primary and secondary resonances present in the system. One obtains various reducibility conditions in a closed form, which show interactions among eigenvalues, nonlinearities and the external excitation. One can also recover all “resonance conditions” obtained via perturbation or averaging techniques. The “linear” as well as the “extended invariant manifold” techniques are applied to some typical problems and results for large-scale and reduced order models are compared. It is anticipated that these techniques will provide a useful tool in the analysis and control of large-scale externally excited nonlinear systems.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 863
Author(s):  
Neveen Ali Eshtewy ◽  
Lena Scholz

High dimensionality continues to be a challenge in computational systems biology. The kinetic models of many phenomena of interest are high-dimensional and complex, resulting in large computational effort in the simulation. Model order reduction (MOR) is a mathematical technique that is used to reduce the computational complexity of high-dimensional systems by approximation with lower dimensional systems, while retaining the important information and properties of the full order system. Proper orthogonal decomposition (POD) is a method based on Galerkin projection that can be used for reducing the model order. POD is considered an optimal linear approach since it obtains the minimum squared distance between the original model and its reduced representation. However, POD may represent a restriction for nonlinear systems. By applying the POD method for nonlinear systems, the complexity to solve the nonlinear term still remains that of the full order model. To overcome the complexity for nonlinear terms in the dynamical system, an approach called the discrete empirical interpolation method (DEIM) can be used. In this paper, we discuss model reduction by POD and DEIM to reduce the order of kinetic models of biological systems and illustrate the approaches on some examples. Additional computational costs for setting up the reduced order system pay off for large-scale systems. In general, a reduced model should not be expected to yield good approximations if different initial conditions are used from that used to produce the reduced order model. We used the POD method of a kinetic model with different initial conditions to compute the reduced model. This reduced order model is able to predict the full order model for a variety of different initial conditions.


Sign in / Sign up

Export Citation Format

Share Document