scholarly journals Online Control of Process Variance Using Feedback

Author(s):  
Mitchell Bieniek ◽  
Bryan Maldonado ◽  
Anna G. Stefanopoulou ◽  
John Hoard
2021 ◽  
Vol 11 (6) ◽  
pp. 2729
Author(s):  
Chien-Hua Lin ◽  
Ming-Che Lu ◽  
Su-Fen Yang ◽  
Ming-Yung Lee

Automation in the service industry is emerging as a new wave of industrial revolution. Standardization and consistency of service quality is an important part of the automation process. The quality control methods widely used in the manufacturing industry can provide service quality measurement and service process monitoring. In particular, the control chart as an online monitoring technique can be used to quickly detect whether a service process is out of control. However, the control of the service process is more difficult than that of the manufacturing process because the variability of the service process comes from widespread and complex factors. First of all, the distribution of the service process is usually non-normal or unknown. Moreover, the skewness of the process distribution can be time-varying, even if the process is in control. In this study, a Bayesian procedure is applied to construct a Phase II exponential weighted moving average (EWMA) control chart for monitoring the variance of a distribution-free process. We explore the sampling properties of the new monitoring statistic, which is suitable for monitoring the time-varying process distribution. The average run lengths (ARLs) of the proposed Bayesian EWMA variance chart are calculated, and they show that the chart performs well. The simulation studies for a normal process, exponential process, and the mixed process of normal and exponential distribution prove that our chart can quickly detect any shift of a process variance. Finally, a numerical example of bank service time is used to illustrate the application of the proposed Bayesian EWMA variance chart and confirm the performance of the process control.


PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0198084
Author(s):  
Yang Sun Park ◽  
Kyung Koh ◽  
Hyun Joon Kwon ◽  
Okjin Lee ◽  
Jae Kun Shim

2015 ◽  
Vol 25 (12) ◽  
pp. 1550167
Author(s):  
Lei Wang ◽  
Hsiao-Dong Chiang

This paper presents online methods for controlling local bifurcations of power grids with the goal of increasing bifurcation values (i.e. increasing load margins) via network topology optimization, a low-cost control. In other words, this paper presents online methods for increasing power transfer capability subject to static stability limit via switching transmission line out/in (i.e. disconnecting a transmission line or connecting a transmission line). To illustrate the impact of network topology on local bifurcations, two common local bifurcations, i.e. saddle-node bifurcation and structure-induced bifurcation on small power grids with different network topologies are shown. A three-stage online control methodology of local bifurcations via network topology optimization is presented to delay local bifurcations of power grids. Online methods must meet the challenging requirements of online applications such as the speed requirement (in the order of minutes), accuracy requirement and robustness requirement. The effectiveness of the three-stage methodology for online applications is demonstrated on the IEEE 118-bus and a 1648-bus practical power systems.


2016 ◽  
Vol 27 (9) ◽  
pp. 2506-2519 ◽  
Author(s):  
Zhi Zhou ◽  
Fangming Liu ◽  
Ruolan Zou ◽  
Jiangchuan Liu ◽  
Hong Xu ◽  
...  

Author(s):  
Bhaskar Ramasubramanian ◽  
Baicen Xiao ◽  
Linda Bushnell ◽  
Radha Poovendran

Sign in / Sign up

Export Citation Format

Share Document