Performance Improved Voltage Controlled Oscillator and Double Balanced Mixer Chip Design

Author(s):  
Wen-Cheng Lai
Author(s):  
Nam-Jin Oh

This paper proposes three types of single stage low-power RF front-end, called double-balanced LMVs, by merging LNA, mixer, and voltage-controlled oscillator (VCO) exploiting a series <em>LC </em>(SLC) network. The low intermediate frequency (IF) or baseband signal can be directly sensed at the drain nodes of the VCO switching transistors by adding a simple resistor-capacitor (<em>RC</em>) low-pass filter (LPF). By adopting a double-balanced mixer topology, the strong leakage of the local oscillator (LO) at the IF output is effectively suppressed. Using a 65 nm CMOS technology, the proposed double-balanced LMVs (DB-LMVs) are designed. Oscillating at around 2.4 GHz ISM band, the phase noise of the proposed three DB-LMVs is −111 dBc/Hz at 1 MHz offset frequency. The simulated voltage conversion gain is larger than 36 dB and the double-side band (DSB) noise figure (NF) is less than 7.7 dB. The DB-LMVs consume only 0.2 mW <em>dc</em> power from 1-V supply voltage.


2015 ◽  
Vol E98.C (6) ◽  
pp. 471-479
Author(s):  
Teerachot SIRIBURANON ◽  
Wei DENG ◽  
Kenichi OKADA ◽  
Akira MATSUZAWA

Author(s):  
Shitesh Tiwari ◽  
Sumant Katiyal ◽  
Parag Parandkar

Voltage Controlled Oscillator (VCO) is an integral component of most of the receivers such as GSM, GPS etc. As name indicates, oscillation is controlled by varying the voltage at the capacitor of LC tank. By varying the voltage, VCO can generate variable frequency of oscillation. Different VCO Parameters are contrasted on the basis of phase noise, tuning range, power consumption and FOM. Out of these phase noise is dependent on quality factor, power consumption, oscillation frequency and current. So, design of LC VCO at low power, low phase noise can be obtained with low bias current at low voltage.  Nanosize transistors are also contributes towards low phase noise. This paper demonstrates the design of low phase noise LC VCO with 4.89 GHz tuning range from 7.33-11.22 GHz with center frequency at 7 GHz. The design uses 32nm technology with tuning voltage of 0-1.2 V. A very effective Phase noise of -114 dBc / Hz is obtained with FOM of -181 dBc/Hz. The proposed work has been compared with five peer LC VCO designs working at higher feature sizes and outcome of this performance comparison dictates that the proposed work working at better 32 nm technology outperformed amongst others in terms of achieving low Tuning voltage and moderate FoM, overshadowed by a little expense of power dissipation. 


Sign in / Sign up

Export Citation Format

Share Document