Joint Estimation Method for Frequency and DOA of Virtual Antenna Array in Space-Time Domain

Author(s):  
Ming Zuo ◽  
Shuguo Xie ◽  
Yuanyuan Li ◽  
Chonghui Zhang
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Haiwen Li ◽  
Nae Zheng ◽  
Xiyu Song ◽  
Yinghua Tian

The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA) and direction of arrival (DOA) parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC) algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM) system, and the Cramer-Rao bound (CRB) is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT) algorithm and 2D matrix pencil (MP) algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.


2017 ◽  
Vol 25 (04) ◽  
pp. 587-603 ◽  
Author(s):  
YUSUKE ASAI ◽  
HIROSHI NISHIURA

The effective reproduction number [Formula: see text], the average number of secondary cases that are generated by a single primary case at calendar time [Formula: see text], plays a critical role in interpreting the temporal transmission dynamics of an infectious disease epidemic, while the case fatality risk (CFR) is an indispensable measure of the severity of disease. In many instances, [Formula: see text] is estimated using the reported number of cases (i.e., the incidence data), but such report often does not arrive on time, and moreover, the rate of diagnosis could change as a function of time, especially if we handle diseases that involve substantial number of asymptomatic and mild infections and large outbreaks that go beyond the local capacity of reporting. In addition, CFR is well known to be prone to ascertainment bias, often erroneously overestimated. In this paper, we propose a joint estimation method of [Formula: see text] and CFR of Ebola virus disease (EVD), analyzing the early epidemic data of EVD from March to October 2014 and addressing the ascertainment bias in real time. To assess the reliability of the proposed method, coverage probabilities were computed. When ascertainment effort plays a role in interpreting the epidemiological dynamics, it is useful to analyze not only reported (confirmed or suspected) cases, but also the temporal distribution of deceased individuals to avoid any strong impact of time dependent changes in diagnosis and reporting.


2021 ◽  
Vol 11 (8) ◽  
pp. 3421
Author(s):  
Cheng-Yu Ku ◽  
Li-Dan Hong ◽  
Chih-Yu Liu ◽  
Jing-En Xiao ◽  
Wei-Po Huang

In this study, we developed a novel boundary-type meshless approach for dealing with two-dimensional transient flows in heterogeneous layered porous media. The novelty of the proposed method is that we derived the Trefftz space–time basis function for the two-dimensional diffusion equation in layered porous media in the space–time domain. The continuity conditions at the interface of the subdomains were satisfied in terms of the domain decomposition method. Numerical solutions were approximated based on the superposition principle utilizing the space–time basis functions of the governing equation. Using the space–time collocation scheme, the numerical solutions of the problem were solved with boundary and initial data assigned on the space–time boundaries, which combined spatial and temporal discretizations in the space–time manifold. Accordingly, the transient flows through the heterogeneous layered porous media in the space–time domain could be solved without using a time-marching scheme. Numerical examples and a convergence analysis were carried out to validate the accuracy and the stability of the method. The results illustrate that an excellent agreement with the analytical solution was obtained. Additionally, the proposed method was relatively simple because we only needed to deal with the boundary data, even for the problems in the heterogeneous layered porous media. Finally, when compared with the conventional time-marching scheme, highly accurate solutions were obtained and the error accumulation from the time-marching scheme was avoided.


Author(s):  
Konstantinos Makantasis ◽  
Athanasios Voulodimos ◽  
Anastasios Doulamis ◽  
Nikolaos Bakalos ◽  
Nikolaos Doulamis

2018 ◽  
Vol 30 (3) ◽  
pp. 1609-1631
Author(s):  
Yingying Wang ◽  
Jifu Liang ◽  
Leonid Belostotski ◽  
Arjuna Madanayake ◽  
Soumyajit Mandal

Sign in / Sign up

Export Citation Format

Share Document