Determination of Maximal Oxygen Uptake Using Seismocardiography at Rest

Author(s):  
Mikkel T Hansen ◽  
Birk M Gronfeldt ◽  
Tue Romer ◽  
Mathilde Fogelstrom ◽  
Kasper Sorensen ◽  
...  
2006 ◽  
Vol 31 (5) ◽  
pp. 541-548 ◽  
Author(s):  
Adrian W. Midgley ◽  
Lars R. McNaughton ◽  
Sean Carroll

This study investigated the utility of a verification phase for increasing confidence that a “true” maximal oxygen uptake had been elicited in 16 male distance runners (mean age (±SD), 38.7  (± 7.5 y)) during an incremental treadmill running test continued to volitional exhaustion. After the incremental test subjects performed a 10 min recovery walk and a verification phase performed to volitional exhaustion at a running speed 0.5 km·h–1 higher than that attained during the last completed stage of the incremental phase. Verification criteria were a verification phase peak oxygen uptake ≤ 2% higher than the incremental phase value and peak heart rate values within 2 beats·min–1 of each other. Of the 32 tests, 26 satisfied the oxygen uptake verification criterion and 23 satisfied the heart rate verification criterion. Peak heart rate was lower (p = 0.001) during the verification phase than during the incremental phase, suggesting that the verification protocol was inadequate in eliciting maximal values in some runners. This was further supported by the fact that 7 tests exhibited peak oxygen uptake values over 100 mL·min–1 (≥ 3%) lower than the peak values attained in the incremental phase. Further research is required to improve the verification procedure before its utility can be confirmed.


2020 ◽  
Vol 45 (5) ◽  
pp. 486-492 ◽  
Author(s):  
Justine Schneider ◽  
Kathrin Schlüter ◽  
Joachim Wiskemann ◽  
Friederike Rosenberger

Cancer survivors demonstrate a reduced maximal oxygen uptake, which is clinically relevant in terms of overall survival. However, it remains uncertain whether they attain their “true maximal oxygen uptake” in a cardiopulmonary exercise test (CPET). In the present study, a supramaximal verification bout (Verif) was applied in cancer survivors to confirm attainment of maximal oxygen uptake. Seventy-five participants (age, 61 ± 12 years; n = 43 females with breast cancer and n = 32 males with prostate cancer, 6–52 weeks after primary therapy) performed a CPET on a cycle ergometer and a Verif at 110% peak power output. As verification criterion, maximal oxygen uptake in Verif should not exceed maximal oxygen uptake in CPET by >3%. On average, maximal oxygen uptake was significantly lower in Verif compared with CPET (1.60 ± 0.38 L·min–1 vs. 1.65 ± 0.36 L·min–1, p = .023). On the individual level, n = 51 (68%) satisfied the verification criterion, whereas n = 24 (32%) demonstrated a higher maximal oxygen uptake in Verif. n = 69 (92%) fulfilled ≥2 secondary criteria for maximal exhaustion in the CPET. While maximal oxygen uptake was not underestimated in the CPET on average, one-third of cancer survivors did not attain their true maximal oxygen uptake. Verif appears feasible and beneficial to confirm true maximal oxygen uptake in this population. Furthermore, it might be more reliable than secondary criteria for maximal exhaustion. Novelty In about one-third of cancer survivors, maximal oxygen uptake is underestimated by a CPET. This underestimation of maximal oxygen uptake is not necessarily indicated by secondary criteria for maximal exhaustion. A supramaximal verification bout appears feasible and helpful for the determination of maximal oxygen uptake in cancer survivors.


2012 ◽  
Vol 31 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Michael Hamlin ◽  
Nick Draper ◽  
Gavin Blackwell ◽  
Jeremy Shearman ◽  
Nicholas Kimber

Determination of Maximal Oxygen Uptake Using the Bruce or a Novel Athlete-Led Protocol in a Mixed PopulationTreadmill tests for maximal oxygen uptake (O2max) have traditionally used set speed and incline increments regardless of participants training or exercise background. The aim of this study was to determine the validity of a novel athlete-led protocol for determining maximal aerobic fitness in adults. Twenty-nine participants (21 male, 8 female, age 29.8 ± 9.5 y, BMI 24.4 ± 3.1, mean ± SD) from a variety of exercise backgrounds were asked to complete two maximal treadmill running tests (using the standard Bruce or a novel athlete-led protocol [ALP]) to volitional failure in a counter-balanced randomised cross-over trial one week apart. We found no substantial difference in maximal oxygen uptake (47.0 ± 9.1 and 46.8 ± 10.7 ml.kg-1.min-1, mean ± SD for the ALP and Bruce protocols respectively), evidenced by the Spearman correlation coefficient of 0.93 (90% confidence limits, 0.88-0.96). However, compared to the Bruce protocol, participants completing the ALP protocol attained a substantially higher maximal heart rate (ALP = 182.8 ± 10.5, Bruce = 179.7 ± 8.7 beats.min-1). Additionally, using the Bruce protocol took a longer period of time (23.2 ± 17.0 s) compared to the ALP protocol. It seems that using either treadmill protocol will give you similar maximal oxygen uptake results. We suggest the ALP protocol which is simpler, quicker and probably better at achieving maximal heart rates is a useful alternative to the traditional Bruce protocol.


2007 ◽  
Vol 37 (12) ◽  
pp. 1019-1028 ◽  
Author(s):  
Adrian W Midgley ◽  
Lars R McNaughton ◽  
Remco Polman ◽  
David Marchant

2010 ◽  
Vol 10 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Goran Ranković ◽  
Vlada Mutavdžić ◽  
Dragan Toskić ◽  
Adem Preljević ◽  
Miodrag Kocić ◽  
...  

Physical capacity of athletes is an important element of success in sports achievements. Aerobic capacity has been accepted as its major component. Maximal oxygen uptake (VO2max) has been regarded by majority of authors as the best indicator of aerobic capacity of an organism, and at the same time, the best indicator of an athlete’s physical capacity. The aim of the investigation was to analyze the aerobic capacity as an indicator of physical capacity of athletes, differences in their aerobic capacity with regard to the kind of sport they are practicing, as well as the differences obtained when compared to physically inactive subjects. The investigation included the determination of absolute and relative VO2max in the total of 66 male examinees. The examinees were divided into two groups of active athletes (football players (n=22) and volleyball players (n=18) of different profiles, while the third group of non-athletes served as control group. Maximal oxygen uptake was determined by performing the Astrand 6 minute cycle test. Peak values of VO2 max were recorded in the group of football players (4,25±0,27 l/min), and they were statistically significantly higher (p<0,001) compared to other examined groups. In the group of volleyball players the oxygen uptake was 3,95±0,18 l/min, while statistically significantly lower values were reported in the group of non-athletes compared to the groups of athletes (p<0,01). A similar ratio of VO2 max values was also shown by the analysis of values expressed in relative units. Our results showed that peak values of VO2 max were obtained in football players, and that football as a sport requires higher degree of endurance compared to volleyball. Having considered the morphological and functional changes which are the consequence of the training process, it can be concluded that VO2 max values are statistically significantly higher in the groups of athletes compared to the group of non-athletes.


2020 ◽  
Vol 45 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Leonardo Trevisol Possamai ◽  
Fernando de Souza Campos ◽  
Paulo Cesar do Nascimento Salvador ◽  
Rafael Alves de Aguiar ◽  
Luiz Guilherme Antonacci Guglielmo ◽  
...  

The present study aimed to compare maximal oxygen uptake of a step incremental test with time to exhaustion verification tests (TLIM) performed on the same or different day. Nineteen recreationally trained cyclists (age: 23 ± 2.7 years; maximal oxygen uptake: 48.0 ± 5.8 mL·kg−1·min−1) performed 3 maximal tests as follows: (i) same day: an incremental test with 3-min stages followed by a TLIM at 100% of peak power output of the incremental test (TLIM-SAME) interspaced by 15 min; and (ii) different day: a TLIM at 100% of peak power output of the incremental test (TLIM-DIFF). The maximal oxygen uptake was determined for the 3 tests. The maximal oxygen uptake was not different among the tests (incremental: 3.83 ± 0.41; TLIM-SAME: 3.72 ± 0.42; TLIM-DIFF: 3.75 ± 0.41 L·min−1; P = 0.951). Seven subjects presented a variability greater than ±3% in both verification tests compared with the incremental test. The same-day verification test decreased the exercise tolerance (240 ± 38 vs. 310 ± 36 s) compared with TLIM-DIFF (P < 0.05). In conclusion, the incremental protocol is capable of measuring maximal oxygen uptake because similar values were observed in comparison with verification tests. Although the need for the verification phase is questionable, the additional tests are useful to evaluate individual variability. Novelty Step incremental test is capable of measuring maximal oxygen uptake with similar values during TLIM on the same or different day. Although the necessity of the verification phase is questionable, it can allow the determination of variability in maximal oxygen uptake.


2016 ◽  
Vol 50 (Suppl 1) ◽  
pp. A23.3-A24
Author(s):  
Ersen Adsiz ◽  
Gulbin Rudrali Nalcakan ◽  
S Rana Varol ◽  
Faik Vural

1971 ◽  
Vol 60 (s217) ◽  
pp. 13-17 ◽  
Author(s):  
R. MOCELLIN ◽  
H. LINDEMANN ◽  
J. RUTENFRANZ ◽  
W. SBRESNY

Sign in / Sign up

Export Citation Format

Share Document