Sensitivity of the Human Ventricular BPS2020 Action Potential Model to the In Silico Mechanisms of Ischemia

Author(s):  
Mohamadamin Forouzandehmehr ◽  
Chiara Bartolucci ◽  
Jari Hyttinen ◽  
Jussi T Koivumaki ◽  
Michelangelo Paci
2012 ◽  
Vol 66 (2) ◽  
pp. 171
Author(s):  
Giovanni Y. Di Veroli ◽  
Mark Davies ◽  
Chris E. Pollard ◽  
Jean-Pierre Valentin ◽  
Henggui Zhang ◽  
...  

Author(s):  
Jordi Cano ◽  
Lucía Romero ◽  
Julio Gomis-Tena ◽  
Alexander Amberg ◽  
Lennart Anger ◽  
...  

2021 ◽  
Author(s):  
Yangyang Lin ◽  
Sam Z. Grinter ◽  
Zhongju Lu ◽  
Xianjin Xu ◽  
Hong Zhan Wang ◽  
...  

AbstractCardiac arrhythmias are the most common cause of sudden cardiac death worldwide. Lengthening the ventricular action potential duration (APD) either congenitally or via pathologic or pharmacologic means, predisposes to a life-threatening ventricular arrhythmia, Torsade de Pointes. IKs, a slowly activating K+ current plays a role in action potential repolarization. In this study, we screened a chemical library in silico by docking compounds to the voltage sensing domain (VSD) of the IKs channel. Here we show that C28 specifically shifted IKs VSD activation in ventricle to more negative voltages and reversed drug-induced lengthening of APD. At the same dosage, C28 did not cause significant changes of the normal APD in either ventricle or atrium. This study provides evidence in support of a computational prediction of IKs VSD activation as a potential therapeutic approach for all forms of APD prolongation. This outcome could expand the therapeutic efficacy of a myriad of currently approved drugs that may trigger arrhythmias.Significance statementC28, identified by in silico screening, specifically facilitated voltage dependent activation of a cardiac potassium ion channel, IKs. C28 reversed drug-induced prolongation of action potentials, but minimally affected the normal action potential at the same dosage. This outcome supports a computational prediction of modulating IKs activation as a potential therapy for all forms of action potential prolongation, and could expand therapeutic efficacy of many currently approved drugs that may trigger arrhythmias.


2022 ◽  
Vol 9 (1) ◽  
pp. 28
Author(s):  
Henry Sutanto

The excitation, contraction, and relaxation of an atrial cardiomyocyte are maintained by the activation and inactivation of numerous cardiac ion channels. Their collaborative efforts cause time-dependent changes of membrane potential, generating an action potential (AP), which is a surrogate marker of atrial arrhythmias. Recently, computational models of atrial electrophysiology emerged as a modality to investigate arrhythmia mechanisms and to predict the outcome of antiarrhythmic therapies. However, the individual contribution of atrial ion channels on atrial action potential and reentrant arrhythmia is not yet fully understood. Thus, in this multiscale in-silico study, perturbations of individual atrial ionic currents (INa, Ito, ICaL, IKur, IKr, IKs, IK1, INCX and INaK) in two in-silico models of human atrial cardiomyocyte (i.e., Courtemanche-1998 and Grandi-2011) were performed at both cellular and tissue levels. The results show that the inhibition of ICaL and INCX resulted in AP shortening, while the inhibition of IKur, IKr, IKs, IK1 and INaK prolonged AP duration (APD). Particularly, in-silico perturbations (inhibition and upregulation) of IKr and IKs only minorly affected atrial repolarization in the Grandi model. In contrast, in the Courtemanche model, the inhibition of IKr and IKs significantly prolonged APD and vice versa. Additionally, a 50% reduction of Ito density abbreviated APD in the Courtemanche model, while the same perturbation prolonged APD in the Grandi model. Similarly, a strong model dependence was also observed at tissue scale, with an observable IK1-mediated reentry stabilizing effect in the Courtemanche model but not in the Grandi atrial model. Moreover, the Grandi model was highly sensitive to a change on intracellular Ca2+ concentration, promoting a repolarization failure in ICaL upregulation above 150% and facilitating reentrant spiral waves stabilization by ICaL inhibition. Finally, by incorporating the previously published atrial fibrillation (AF)-associated ionic remodeling in the Courtemanche atrial model, in-silico modeling revealed the antiarrhythmic effect of IKr inhibition in both acute and chronic settings. Overall, our multiscale computational study highlights the strong model-dependent effects of ionic perturbations which could affect the model’s accuracy, interpretability, and prediction. This observation also suggests the need for a careful selection of in-silico models of atrial electrophysiology to achieve specific research aims.


2001 ◽  
Vol 280 (2) ◽  
pp. H535-H545 ◽  
Author(s):  
Fagen Xie ◽  
Zhilin Qu ◽  
Alan Garfinkel ◽  
James N. Weiss

Generation of wave break is a characteristic feature of cardiac fibrillation. In this study, we investigated how dynamic factors and fixed electrophysiological heterogeneity interact to promote wave break in simulated two-dimensional cardiac tissue, by using the Luo-Rudy (LR1) ventricular action potential model. The degree of dynamic instability of the action potential model was controlled by varying the maximal amplitude of the slow inward Ca2+ current to produce spiral waves in homogeneous tissue that were either nearly stable, meandering, hypermeandering, or in breakup regimes. Fixed electrophysiological heterogeneity was modeled by randomly varying action potential duration over different spatial scales to create dispersion of refractoriness. We found that the degree of dispersion of refractoriness required to induce wave break decreased markedly as dynamic instability of the cardiac model increased. These findings suggest that reducing the dynamic instability of cardiac cells by interventions, such as decreasing the steepness of action potential duration restitution, may still have merit as an antifibrillatory strategy.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2792
Author(s):  
Pengfei Lu ◽  
Mladen Veletić ◽  
Jacob Bergsland ◽  
Ilangko Balasingham

The heart consists of billions of cardiac muscle cells—cardiomyocytes—that work in a coordinated fashion to supply oxygen and nutrients to the body. Inter-connected specialized cardiomyocytes form signaling channels through which the electrical signals are propagated throughout the heart, controlling the heart’s beat to beat function of the other cardiac cells. In this paper, we study to what extent it is possible to use ordinary cardiomyocytes as communication channels between components of a recently proposed multi-nodal leadless pacemaker, to transmit data encoded in subthreshold membrane potentials. We analyze signal propagation in the cardiac infrastructure considering noise in the communication channel by performing numerical simulations based on the Luo-Rudy computational model. The Luo-Rudy model is an action potential model but describes the potential changes with time including membrane potential and action potential stages, separated by the thresholding mechanism. Demonstrating system performance, we show that cardiomyocytes can be used to establish an artificial communication system where data are reliably transmitted between 10 s of cells. The proposed subthreshold cardiac communication lays the foundation for a new intra-cardiac communication technique.


Sign in / Sign up

Export Citation Format

Share Document