scholarly journals PyAWNeS-Codec: Speech and audio codec for ad-hoc acoustic wireless sensor networks

Author(s):  
Tom Backstrom ◽  
Mariem Bouafif Mansali ◽  
Pablo Perez Zarazaga ◽  
Meghna Ranjit ◽  
Sneha Das ◽  
...  
2005 ◽  
Vol 1 (2) ◽  
pp. 245-252 ◽  
Author(s):  
P. Davis ◽  
A. Hasegawa ◽  
N. Kadowaki ◽  
S. Obana

We propose a method for managing the spontaneous organization of sensor activity in ad hoc wireless sensor systems. The wireless sensors exchange messages to coordinate responses to requests for sensing data, and to control the fraction of sensors which are active. This method can be used to manage a variety of sensor activities. In particular, it can be used for reducing the power consumption by battery operated devices when only low resolution sensing is required, thus increasing their operation lifetimes.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881130 ◽  
Author(s):  
Jaanus Kaugerand ◽  
Johannes Ehala ◽  
Leo Mõtus ◽  
Jürgo-Sören Preden

This article introduces a time-selective strategy for enhancing temporal consistency of input data for multi-sensor data fusion for in-network data processing in ad hoc wireless sensor networks. Detecting and handling complex time-variable (real-time) situations require methodical consideration of temporal aspects, especially in ad hoc wireless sensor network with distributed asynchronous and autonomous nodes. For example, assigning processing intervals of network nodes, defining validity and simultaneity requirements for data items, determining the size of memory required for buffering the data streams produced by ad hoc nodes and other relevant aspects. The data streams produced periodically and sometimes intermittently by sensor nodes arrive to the fusion nodes with variable delays, which results in sporadic temporal order of inputs. Using data from individual nodes in the order of arrival (i.e. freshest data first) does not, in all cases, yield the optimal results in terms of data temporal consistency and fusion accuracy. We propose time-selective data fusion strategy, which combines temporal alignment, temporal constraints and a method for computing delay of sensor readings, to allow fusion node to select the temporally compatible data from received streams. A real-world experiment (moving vehicles in urban environment) for validation of the strategy demonstrates significant improvement of the accuracy of fusion results.


2012 ◽  
pp. 864-892
Author(s):  
Jianmin Chen ◽  
Jie Wu

Many secure mobile ad hoc networks (MANETs) and wireless sensor networks (WSNs) use techniques of applied cryptography. Numerous security routing protocols and key management schemes have been designed based on public key infrastructure (PKI) and identity-based cryptography. Some of these security protocols are fully adapted to fit the limited power, storage, and CPUs of these networks. For example, one-way hash functions have been used to construct disposable secret keys instead of creating public/private keys for the public key infrastructure. In this survey of MANET and WSN applications we present many network security schemes using cryptographic techniques and give three case studies of popular designs.


Author(s):  
Pradeep Kumar Ts ◽  
Sayali Chitnis

The world of internet of things (IoT) and automation has been catching a robust pace to impact wide range of commercial and domestic applications for some time now. The IoT holds ad-hoc or wireless sensor networks (WSNs) at its very primary implementation level, the hardware level. The increasing requirement of these networks demands a renewed and better design of the network that improves the already existing setbacks of WSNs, which is mainly the power consumption and optimization. Routing highly affects the power consumed in the nodes in WSNs, hence having a modified routing algorithm which is specific to the application and meets its needs, particularly it is a good approach instead of having a generalized existent routing approach. Currently, for WSN having adequate number of nodes, routing involves maximum number of nodes and hops so as to reduce power consumption. However, for restricted areas and limited nodes, this scenario concludes with using up more number of nodes simultaneously resulting in reducing several batteries simultaneously. A routing algorithm is proposed in this paper for such applications that have a bounded region with limited resources. The work proposed in this paper is motivated from the routing algorithm positional attribute based next-hop determination approach (PANDA-TP) which proposes the increase in number of hops to reduce the requirement of transmission power. The aim of the proposed work is to compute the distance between the sending and receiving node and to measure the transmission power that would be required for a direct(path with minimum possible hops) and a multi-hop path. If the node is within the thresh-hold distance of the source, the packet is undoubtedly transferred directly; if the node is out of the thresh-hold distance, then the extra distance is calculated. Based on this, the power boosting factor for the source node, and if necessary, then the extra number of nodes that would be required to transmit is determined. An extra decision-making step is added to this approach which makes it convenient to utilize in varied situations. This routing approach suits the current level of robustness that the WSNs demand. 


Sign in / Sign up

Export Citation Format

Share Document