Effects of System Parameters on the Steady-State Characteristics of a Wind Turbine Generator Based on Self-Excited Synchronous Generator for HVDC-Connected Wind Power Plants

Author(s):  
Yuzuki Yamamoto ◽  
Shigetaka Kobayashi ◽  
Ken-Ichiro Yamashita
2021 ◽  
Vol 9 (12) ◽  
pp. 1413
Author(s):  
Linda Barelli ◽  
Dario Pelosi ◽  
Dana Alexandra Ciupageanu ◽  
Panfilo Andrea Ottaviano ◽  
Michela Longo ◽  
...  

Among Renewable Energy Sources (RES), wind energy is emerging as one of the largest installed renewable-power-generating capacities. The technological maturity of wind turbines, together with the large marine wind resource, is currently boosting the development of offshore wind turbines, which can reduce the visual and noise impacts and produce more power due to higher wind speeds. Nevertheless, the increasing penetration of wind energy, as well as other renewable sources, is still a great concern due to their fluctuating and intermittent behavior. Therefore, in order to cover the mismatch between power generation and load demand, the stochastic nature of renewables has to be mitigated. Among proposed solutions, the integration of energy storage systems in wind power plants is one of the most effective. In this paper, a Hybrid Energy Storage System (HESS) is integrated into an offshore wind turbine generator with the aim of demonstrating the benefits in terms of fluctuation reduction of the active power and voltage waveform frequency, specifically at the Point of Common Coupling (PCC). A MATLAB®/SimPowerSystems model composed of an offshore wind turbine interfaced with the grid through a full-scale back-to-back converter and a flywheel-battery-based HESS connected to the converter DC-link has been developed and compared with the case of storage absence. Simulations were carried out in reference to the wind turbine’s stress conditions and were selected—according to our previous work—in terms of the wind power step. Specifically, the main outcomes of this paper show that HESS integration allows for a reduction in the active power variation, when the wind power step is applied, to about 3% and 4.8%, respectively, for the simulated scenarios, in relation to more than 30% and 42% obtained for the no-storage case. Furthermore, HESS is able to reduce the transient time of the frequency of the three-phase voltage waveform at the PCC by more than 89% for both the investigated cases. Hence, this research demonstrates how HESS, coupled with renewable power plants, can strongly enhance grid safety and stability issues in order to meet the stringent requirements relating to the massive RES penetration expected in the coming years.


2013 ◽  
Vol 2 (2) ◽  
pp. 69-74 ◽  
Author(s):  
A.K. Rajeevan ◽  
P.V. Shouri ◽  
Usha Nair

A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.


2019 ◽  
Vol 9 (21) ◽  
pp. 4695 ◽  
Author(s):  
Esmaeil Ebrahimzadeh ◽  
Frede Blaabjerg ◽  
Torsten Lund ◽  
John Godsk Nielsen ◽  
Philip Carne Kjær

It is important to develop modelling tools to predict unstable situations resulting from the interactions between the wind power plant and the weak power system. This paper presents a unified methodology to model and analyse a wind power plant connected to weak grids in the frequency-domain by considering the dynamics of the phase lock loop (PLL) and controller delays, which have been neglected in most of the previous research into modelling of wind power plants to simplify modelling. The presented approach combines both dq and positive/negative sequence domain modelling, where a single wind turbine is modelled in the dq domain but the whole wind power plant connected to the weak grid is analysed in the positive/negative sequence domain. As the proposed modelling of the wind power plant is systematic and modular and based on the decoupled positive/negative sequence impedances, the application of the proposed methodology is relevant for transmission system operators (TSOs) to assess stability easily with a very low compactional burden. In addition, as the analytical dq impedance models of the single wind turbine are provided, the proposed methodology is an optimization design tool permitting wind turbine manufacturers to tune their converter control. As a case study, a 108 MW wind power plant connected to a weak grid was used to study its sensitivity to variations in network short-circuit level, X/R ratio and line series capacitor compensation (Xc/Xg).


2003 ◽  
Vol 27 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Niels Raben ◽  
Martin Heyman Donovan ◽  
Erik Jørgensen ◽  
Jan Thisted ◽  
Vladislav Akhmatov

An experiment with tripping and re-connecting a MW wind turbine generator was carried out at the Nøjsomheds Odde wind farm in Denmark. The experimental results are used primarily to validate the shaft system representation of a dynamic wind turbine model. The dynamic wind turbine model is applied in investigations of power system stability with relation to incorporation of large amounts of wind power into the Danish power grid. The simulations and the measurements are found to agree. The experiment was part of a large R&D program started in Denmark to investigate the impact of the increasing capacity of wind power fed into the Danish power grid.


Sign in / Sign up

Export Citation Format

Share Document