Design and Analysis of Magnetic Powder Core for a Three-phase PFC Reactor Based on Equal Magnetic Flux Path

Author(s):  
Jianfen Zheng ◽  
Chunfang Wang ◽  
Heqi Xu ◽  
Dongwei Xia
2019 ◽  
Vol 34 (11) ◽  
pp. 11062-11070
Author(s):  
Jianfen Zheng ◽  
Chunfang Wang ◽  
Dongwei Xia
Keyword(s):  

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 284
Author(s):  
Ruchao Pupadubsin ◽  
Seubsuang Kachapornkul ◽  
Prapon Jitkreeyarn ◽  
Pakasit Somsiri ◽  
Kanokvate Tungpimolrut

The goal of this paper is to present a comparative analysis of two types of winding arrangements for a three-phase 12/8 switched reluctance motor (SRM), where short- and fully-pitched winding arrangements under unipolar operation are considered. From the analytical results, the short-pitched winding has the best torque per copper weight ratio. The core loss based on counting the number of flux reversals in the stator yoke for each winding arrangement is also proposed and mentioned. To reduce the magnetic flux reversals in the stator core, changing the direction of the magnetic flux path by modifying the winding polarities of the short-pitched winding could reduce 10–13% of core loss compared to the conventional winding. A 1 kW, 12/8 SRM prototype for the ventilation fan application is constructed and tested in order to verify the design consideration of winding configuration. At the rated condition, a maximum efficiency around 82.5% could be achieved.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1495-1504
Author(s):  
Fangchao Xu ◽  
Yongquan Guo ◽  
Ran Zhou ◽  
Junjie Jin ◽  
Chuan Zhao ◽  
...  

To solve the problem of reduction of suspension force of permanent magnet system with variable magnetic flux path control, according to the structure of the system, suspension principle of the permanent magnet system with variable magnetic flux path control and the generation principle of the load torque, the influence of the mechanical structure of the system on the suspension force is analyzed by changing part of parameters of the system structure. The results show that the existence of magnetic isolation plate is the main reason for the decrease of suspension force, the permanent magnet ring can be thickened to 11.91 mm, the annular gap can be reduced to 1 mm, thickness of the “F” shaped magnetizer can be increased to 9 mm to increase the suspension force.


2007 ◽  
Author(s):  
Katsunori Soejima ◽  
Tsuyoshi Higuchi ◽  
Takashi Abe ◽  
Tadashi Hirayama

2014 ◽  
Vol 695 ◽  
pp. 774-777
Author(s):  
Siti Nur Umira Zakaria ◽  
Erwan Sulaiman

This paper presents magnetic flux analysis of E-Core Hybrid Excited FSM with various rotor pole topologies. The stator consists of three active fluxes sources namely armature coil, field excitation coil and permanent magnet, while the rotor consists of only stack of iron which is greatly reliable for high speed operation. Initially, coil arrangement tests are examined to validate the operating principle of the motor and to identify the zero rotor position. Then, performances of 6S-4P, 6S-5P, 6S-7P and 6S-8P E-Core HEFSMs such as flux path, flux linkage, cogging torque and flux distribution are observed. As conclusion, 6S-5P and 6S-7P designs have purely sinusoidal flux waveform and less cogging torque suitable for high torque and power motor.


2011 ◽  
Vol 298 ◽  
pp. 173-178 ◽  
Author(s):  
Qing Da Li ◽  
X.W. Dong ◽  
T.X. Liu ◽  
Jun Hua You ◽  
Fa Zeng Lian

The Fe-Si-Al soft magnetic composites were produced by cold pressing of water-atomized Fe-Si-Al powder using organic binder. The effect of shaping pressure, annealing temperature, magnetic annealing and dielectric content on properties of Fe-Si-Al soft magnetic composites was investigated. The results showed that increasing shaping pressure increases density and radial crushing strength of Fe-Si-Al soft magnetic cores, and decreases coercivity and total loss. Increasing annealing temperature can increase effective permeability and decrease total loss owing to decreasing hysteresis loss, and over-annealing (>660°C) can deteriorate magnetic properties. The magnetic annealing can decrease total loss of Fe-Si-Al magnetic powder core. Increasing dielectric content can reduce the eddy current loss of Fe-Si-Al magnetic powder core and decrease the real part of permeability. Fe-Si-Al magnetic powder core with shaping pressure of 1800 MPa, annealing temperature of 660 °C and dielelctric content of 0.7% presented the optimum magnetic properties with an effective permeability of 127, a total loss of 78mW/cm3 and a radial crushing strength of 18MPa.


2010 ◽  
Vol 670 ◽  
pp. 223-234
Author(s):  
P. Curiac ◽  
D.H. Kang

A study for the enhancement of effective magnetic flux of Permanent Magnet-Transversal Flux Machines using flux guiding is presented. By taking into account an intrinsic demagnetization curve which considers the leakage flux, the stator winding can be more compact; furthermore, a lighter stator and a more efficient permanent magnet machine can be obtained by using magnetic flux path guiding.


Sign in / Sign up

Export Citation Format

Share Document