scholarly journals Chemical and Toxicological Diagnosis of Acute Poisonings with Phenazepam

2019 ◽  
Vol 7 (4) ◽  
pp. 319-324
Author(s):  
M. V. Belova ◽  
E. A. Klyuyev ◽  
E. S. Melnikov ◽  
D. M. Yeliseyeva

Background. The relative availability of Phenazepam makes it a frequent cause of overdose, suicide and non-medical use. At the same time, it remains insufficiently studied in chemical and toxicological terms.The aim of study. to create an accessible, rapid method for detecting Phenazepam in biological matrices of patients with acute poisoning.Materials and methods. We used thin-layer chromatography (TLC), gas chromatography with a mass selective detector (GC-MS), high performance liquid chromatography with a tandem mass-selective detector (LC-MS/MS) and immunochromatographic analysis (ICA). The preparation of samples of intact urine with the addition of standard solutions of Phenazepam and real urine samples of patients with acute poisoning with Phenazepam was carried out using liquid-liquid extraction or precipitation of related components of the sample with acetonitrile. Hydrolysis and derivatization were also added in GC-MS analysis.Results. The analysis of statistics of the Department of Acute Poisonings of the N.V. Sklifosovsky Research Institute for Emergency Medicine in 2014-2016 showed that Phenazepam poisonings averaged 9.2% of the total number of admissions and mainly occurred as suicidal attempts. A technique has been developed for the detection of Phenazepam by TLC, which gives more objective results than ICA. For confirmatory analysis, it is advisable to use LC-MS/MS method for the native substance and GC-MS for the products of hydrolysis after derivatization. Compared to confirmatory methods, the developed TLC-screening technique is expressive, does not require the use of expensive high-tech equipment, difficult sample preparation, and makes it possible to reliably detect toxic and lethal concentrations of Phenazepam.

2020 ◽  
Vol 9 (2) ◽  
pp. 188-194
Author(s):  
M. V. Belova ◽  
E. A. Klyuyev ◽  
E. S. Melnikov ◽  
M. N. Poryadina

Relevance The large number of atypical antipsychotic drugs on the market , the breadth of their medical and non-medical use, and their relative affordability make atypical antipsychotics common causes of overdose, suicidal actions or non-medical use of drugs. At the same time, they remain insufficiently studied from the chemical and toxicological point of veiw.Aim od study: creation of available express method of detection of clozapine, olanzapine, quetiapine and risperidone in the urine of patients with acute poisoning.Material and methods Thin layer chromatography (TLC), gas chromatography with mass selective detection (GC-MS), and high performance liquid chromatography with mass selective detection (HPLC-MS/MS) were used. The preparation of intact urine samples with addition of standard solutions of clozapine, olanzapine, quetiapine, risperidone and urine samples of patients with symptoms of acute poisoning with given drugs was carried out by methods of liquid-liquid extraction at alkaline pH values for TLC chloroform, a mixture of ethyl acetate-diethyl ether (1:1) for GC-MS and acetonitrile for HPLC-MS/MS.Results A TLC method has been developed to detect clozapine, olanzapine, quetiapine and risperidone, which allows its the presence to be quickly revealed in the patient’s urine at the preliminary examination stage and also distinguish them from each other in case of the same type of symptoms of poisoning. For confirmatory analysis, it is advisable to use the methods of HPLC-MS/MS and GC-MS. Compared to confirmatory methods, the developed TLC-screening technique is expressive, does not require the use of expensive high-tech equipment and allows clozapine, olanzapine, quetiapine and risperidone to be differentiated from other toxicologically significant psychoactive substances found in general screening.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Deepthika De Silva ◽  
Steven Lee ◽  
Anna Duke ◽  
Siva Angalakurthi ◽  
Ching-En Chou ◽  
...  

These studies represent the first report on the intravascular residence time determinations for the cyanide antidote dimethyl trisulfide (DMTS) in a rat model by using high performance liquid chromatography coupled with ultraviolet absorption spectroscopy (HPLC-UV). The newly developed sample preparation included liquid-liquid extraction by cyclohexanone. The calibration curves showed a linear response for DMTS concentrations between 0.010 and 0.30 mg/mL withR2= 0.9994. The limit of detection for DMTS via this extraction method was 0.010 mg/mL, and the limit of quantitation was 0.034 mg/mL. Thus this calibration curve provided a tool for determining DMTS in the range between 0.04 and 0.30 mg/mL. Rats were given 20 mg/kg DMTS dose (in 15% Polysorbate 80) intravenously, and blood samples were taken 15, 60, 90, 120, and 240 min after DMTS injections. The data points were plotted as DMTS concentration in RBCs versus time, and the intravascular residence time was determined graphically. The results indicated a half-life of 36 min in a rat model, suggesting that the circulation time is long enough to provide a reasonable time interval for cyanide antagonism.


Author(s):  
RIMADANI PRATIWI ◽  
RASPATI D. MULYANINGSIH ◽  
NYI M. SAPTARINI

Objective: This study was aimed to understand and determine the effectiveness of allopurinol extraction in herbal medicine from three extraction methods based on parameters of accuracy and precision. Methods: The study consisted of three methods including dissolving and filtering, liquid-liquid extraction, and solid-phase extraction with mixed-mode cation exchanger (SPE-MCX). The procedures were carried out using NaOH and HCl in dissolving and filtering method; methanol, HCl, and ethyl acetate in liquid-liquid extraction; and NH4OH elution solvent in SPE-MCX. Results: The results showed that extraction effectiveness based on accuracy level was the dissolving and filtering method>SPE-MCX>liquid-liquid extraction with % recovery+SD of 91.314+2.903%, 87.533+4.950%, and 54.549+3.517%, respectively. The precision level was the dissolution and filtering method>SPE-MCX>liquid-liquid extraction based on % relative standard deviations (RSD) of 3.18%, 5.226%, and 6.446%, respectively. Conclusion: It can be concluded that the allopurinol extraction method with the highest effectiveness based on accuracy and precision parameters in herbal medicine is the dissolving and filtering method.


Sign in / Sign up

Export Citation Format

Share Document