scholarly journals GEODYNAMICS

GEODYNAMICS ◽  
2021 ◽  
Vol 2(31)2021 (2(31)) ◽  
pp. 53-65
Author(s):  
Оleksii Bartaschuk ◽  
◽  
Vasyl Suyarko ◽  

The article studies the system organization of inversion tectonic deformations of the Dnieper-Donetsk Basin which covered the territory of the Western Donetsk Graben. The research uses the kinematic and structural-paragenetic analysis of inversion structural transformation of the folded floors of the sedimentary cover of the Graben. The original model of tectonic inversion of the Dnieper-Donets Basin was completed from the previous models. The tectonic inversion of the Dnieper-Donets Paleorift rift-like structures began at the late Hercynian stage in the geodynamic environment of the territory of the Eastern European Platform general collision. Tectonophysical analysis shows that the inversion folding was formed by the mechanism of sedimentary horizons longitudinal bending in the environment of the interference of the intraplate submeridional collision compression and the regional strike-slip stress field. At the Mesozoic-Cenozoic stage, tectonic inversion continued in the field of right-hand strike-slip deformations with a variable compressive component. This caused the formation of folded covers of tectonic plates and scales in the uplift-thrust mode. They, Hercynian neo-autochthonous formations and further the weakly located syneclise autochthon of the South-east of the Basin. The pressure of the "tectonic stamp" geoblock of the Donetsk Foldbelt contributed to the formationof the Segment body of geomass Tectonic Wedging. It was diagnosed with a structural orocline of transverse extension of the sliding type. Large linear throw-folded zones were formed within geodynamic bands of injection and displacement of geomass along the front of the orocline. The tectonic compression fan, characteristic of geodynamic compression zones, was formed in the foreland of the orocline, on the ends of the main thrusts. They served as “tectonic rails”of the allochthon invasion within the rift-like structure. There are the transverse zones of tectonic sutures formed on the roots of the folding covers of the Hercynian neo-autochthon thrusting, which are located in the hinterland of the orocline in the Foldbelt Western slope. The study completed an original kinematic model of tectonic inversion of the transition zone between the Dnieper-Donets Basin and Donets Foldbelt. According to the model, the pressure of the “tectonic stamp” geoblock initiated the invasion of the Segment of Tectonic Wedging which consists of the intensively dislocated allochthonous geomass. The Segment destroyed the rift-like structure and formed the Western Donetsk Cover-Folded Region in the South-eastern part of the Basin. The system organization model of inversion complications of the rift-like structure in the territory of the Western Donetsk Graben will allow to improve the regional geological schemes of tectonic oil and gas zoning.

Formulation of the problem. In the second part of the article, the geodynamic mode and the kinematic mechanism of destruction of the Dnieper–Donetsk Basin by tectonic movements of the Late Hercynian and Alpine stages of tectogenesis were studied. New results of tectonophysical studies of the structural–kinematic evolution of the Earth's crust of Dnieper–Donetsk Basin at the collision stage are presented. The subject of research is a complex of deformation structures that complicate the sedimentary cover in the transitional zone of with Donetsk Foldbelt. Review of previous publications and studies. Using instrumental definitions of tectonite vergence, data of reconstruction of stress fields and quantitative modeling of deformations, a original kinematic model of tectonic inversion of the Dnieper–Donetsk Basin was developed. Methods. Structural–kinematic analysis of the structural drawings of collisional deformation and tectonics structures was used for regional geotectonic studies. Results. Tectonic inversion of the Dnieper-Donetsk Basin and Donbass began at the Late Hercynian epoch as a result of collisional movements of the compression orogen on the outskirts of the Paleotethis. Tangential compression of the southwestern direction led to the formation of gentle tectonic faults in the sedimentary cover of the Western Donets Graben, along which a lattice of thrust faults was formed. For a set of extrusion of sedimentary rocks in the reverse–thrust mode from the axial super-compressed zone, tectonic transport of geomas took place in the direction of the zones of "geodynamic shadow" on the southern side. Collisional deformations of horizons by the mechanism of longitudinal bending of the layers caused the formation of linear uplift-folding in the northern part of the Graben, and echelons of scaly thrust covers in the southern. At the Mesozoic and Cenozoic epochs, in the mode of interference of the reverse–thrust and horizontal-strike-slip fields, the Hercynian thrust lattice and the near-fault uplift folds underwent collisional deformation with the formation of coulisse–jointed folded zones and echeloned thrust covers. Based on the kinematic model of tectonic inversion of the Western Donets Graben, the geodynamics of the formation of the transition zone between the Dnieper–Donets Basin and the Donetsk Foldbelt is reconstructed. These data are the basis for adjusting the regional schemes of tectonic and oil and gas geological zoning. Scientific novelty and practical significance. The grouping of the compression axes in the western part of the Donbass caused the formation of a gorst-like geoblock-stamp, under the pressure of which the dislocated geomasses were thrusting onto the syneclisic cover of the southeastern segment of the depression. In the Western Donetsk Graben, the allochthonous stratum formed the body of the tectonic wedging geomas segment. Along the main strike–slip faults, which form the "tectonic rails" of the invasion, geodynamic zones of displacement of geomas were formed, composed of en-echelon articulated upthrust-folds. In its foreland, at the ends of the main strike–slip faults, an advanced scaly compression fan was formed, and in the hinterland, folded sutures were formed on the roots of the thrust covers. The main result of the research is a fundamentally new kinematic model of tectonic inversion of the Dnieper-Donetsk Basin. The model provides that the deformations of the riftogenic structure within the Graben were carried out according to the kinematic mechanism of the formation of a transverse orocline protruding under the pressure of the tectonic geoblock-stamp of the Donetsk Foldbelt.


2020 ◽  
Vol 15 (4) ◽  
Author(s):  
A.V. Bartashchuk ◽  

The tectonic inversion of the Dnieper-Donets Basin and the Donets Foldbelt began in the Late Hercynian epoch under the influence of collisional movements of the left-sided knematics of the compression orogen on the edge of the Paleotethis. It is shown that as a result of gently inclined disruptions in the Paleozoic platform cover of the West Donets Graben, a thrust lattice was formed, which controlled the processes of collisional buckling of the horizons in the thrust and strike-slip modes. As a result of the displacement of geomasses from the axial zones of maximum compression to the zones of "geodynamic shadow" - in the direction of the Basin borders in the northern and axial parts of the Graben, linear uplift folds were formed, and in the southern - thrust covers. At the Late Mesozoic and Cenozoic, in the mode of interference of the uplift-thrust and strike-slip fields of the reverse, right-sided kinematics of movements, deformations of the Hercynian thrust lattice and the dynamically conjugated linear near-fault folding took place with the formation of coulisse articulated upthrust-fold zones and en-echelonly overthrust covers. The geodynamic setting of the grouping of the compression axes in the western part of the Donbass, which was experiencing orogenic uplift, caused the thrust of allochthonous geomasses to the syneclise related autochthon of the southeastern segment of the depression. In the West Donets Graben, this caused an increase in the section beyond the Hercynian Neoautochthon and the Cimmerian-Alpine allochthon with the formation of a clinoform wedging Segment. Along the main strike-slip faults, which form the tectonic rails of its invasion, geodynamic zones of geomass squeezing out, formed by curvilinear, en-echelonly upthrow folds, were formed. In the foreland of the Segment, at the ends of dynamically coupled thrust and strike-slip faults, a forward compression fan is formed; in the hinterland, on the roots of thrust covers, folded suture zones are formed. Based on the results of the kinematic analysis of the Hercynian and Alpine deformation structures, a new kinematic model of the tectonic inversion of the riftogenic structure of the Southeastern Segment of the Dnieper-Donets Basin has been developed. In accordance with it, the deformations of the sedimentary cover of the West Donets Graben were carried out according to the kinematic mechanism of a transverse orocline of pushing geomasses of the sub-thrust type, under the pressure of the tectonic stamp of the Donets Foldbelt.


GEODYNAMICS ◽  
2021 ◽  
Vol 1(30)2021 (1(30)) ◽  
pp. 25-35
Author(s):  
Оleksii Bartaschuk ◽  
◽  
Vasyl Suyarko ◽  

The second part of the article studies the tectonic conditions and natural mechanisms of tectonic inversion of the Dnieper-Donets Basin and the Western Donets Graben. Method. The research uses the original method of reconstruction of fields of tectonic stresses and deformations. It also makes tectonophysical analysis of geostructures was used. The analytical base of the research consisted of the latest materials of geo-mapping, numerical modeling of deformations of the southern edge of the Eastern European platform and comparison of model and reconstructed stress fields. Results. In the geodynamic environment of the interference of the intraplate submeridional collision compression with the regional strike-slip stress field, the inversion deformations of the rift-like geostructure took place in the uplift-thrust and strike-slip modes. This led to significant horizontal movements of geomass of sedimentary rocks, deformation folding with the formation of three inversion floors - Late Hercynian (Saal-Pfalz), Early Alpine (Laramian) and Late Alpine (Attic). They formed structural ensembles of scaly tectonic covers of transverse displacement of geomass a from axial to onboard zones, folded covers of longitudinal approach from the Donbas Foldbelt and long linear anti- and synforms, the axes of which are oriented orthogonally to the direction of geomass advancement. Together they form the body of the Segment of Tectonic Wedging of geomass, which is distinguished as part of the Cover-Folded System of Tectonic Thrusting of regional scale. A feature of the tectonic framework of the Segment is the curvature of the planes of the main thrusts, which limit it, and smaller plumage thrusts, which control the folded covers of the thrust. It is associated with a change in the extension of the thrusts from the north-west in the territory of the Western Donets Graben to the western direction in the extreme south-east of the Basin. This causes the corresponding bending of the axes of the fracture anti- and synforms. Structural patterns of folding with a tendency to adapt the axes of folds to the extension of thrusts indicate significant horizontal displacements of geomas of the sedimentary stratum, which in conditions of limited geological space cause secondary deformations of linear folded forms. Due to the displacement of geomas from the zones of maximum compression in the axial part of the Graben to the zones of geodynamic shadow - in the direction of the Oryl depression and Graben boards, the West Donets Cover-Folded Tectonic Region was formed within the transition zone. Scientific novelty. The study completed an original kinematic model of tectonic inversion of the Western Donets Graben was completed. The mechanism of inversion, due to which the riftogenic structure is completely destroyed by folded deformations of platform orogeneses, is caused by the pressure of the "tectonic stamp" of the Donbas Foldbelt. Under its influence, a segment of tectonic wedge was formed in the Graben, which was diagnosed with oroclin of transverse extension of the sliding type. The body of the Oroclin is formed by echeloned, rock-articulated ensembles of anticlinal uplift -folds, synclines and scaly plates-covers of pushing. A geodynamic injection band was formed in the foreland of the Tectonic Orocline extension, where folded zones of geomas displacement were formed, which consist of coulisse articulated uplift-anticlines. At the top of the Orocline, at the ends of dynamically conjugate main thrusts, an advanced tectonic compression fan is formed. In the rear of the Oroclin – hinterland are tectonic sutures – the roots of the folding covers of the approach. Practical significance. Development of a structural-kinematic model of tectonic inversion of the Western Donets Graben will allow to improve the geodynamic model of tectonic inversion of the Dnieper-Donets paleorift, on the basis of which regional schemes of tectonic and oil-gas-geological zoning will be adjusted.


2020 ◽  
Vol 149 ◽  
pp. 02007
Author(s):  
Andrew Belonosov ◽  
Anton Kudryavtsev ◽  
Sergey Sheshukov ◽  
Dmitry Borisov

In the South of Western Siberia oil-perspectivity Jurassic deposits are characterized by multi – and small-scale. The interpretation of earth remote sensing materials in the visible, near and far infrared ranges allowed to evaluate the oil potential of numerous domes and depressions on the basis of combining geodynamically stressed zones and calculating the physical characteristics of the earth's surface (albedo, radiation coefficient, thermal inertia, convective heat flow, daily evaporation of moisture, DEM, weather conditions, etc.), including the procedure of reference classification, where the standards are the nearest oil and gas condensate fields. The forecast boundary of “oil and gas condensate” lands of the South of Western Siberia is displaced to the latitude of u.v. Lebyazhye of the Eastern part of the Kurgan region.


GEODYNAMICS ◽  
2021 ◽  
Vol 2(31)2021 (2(31)) ◽  
pp. 66-83
Author(s):  
Sergiy Anikeyev ◽  
◽  
Svitlana Rozlovska ◽  

The aim of the research presented in this article is to analyze the properties and geological informative value of the anisotropic transformations of gravitational and magnetic fields, which use averaging procedures, including analysis of Andreev-Klushin's method. Anisotropic transformations of potential fields are designed to detect and track elongated anomalies or their chains, caused by deep linear dislocations in the geological section. The study of the anisotropic transformations properties is based on the analysis of their depth characteristics, as well as theoretical and practical experiments. The study applies the analysis method of fault tectonics reflection features in anisotropic anomalies of gravimagnetic fields, in particular, on the example of the South-East of the Ukrainian Carpathians. It is based on the search of morphological signs of manifestation of deep faults and other long structural-tectonic dislocations in gravitational and magnetic anisotropic anomalies. The method also suggests tracing these elements, relying on the comparison of morphology, intensity, size and direction of anisotropic anomalies with published regional tectonic and geological maps. Results. The paper presents definitions and algorithms of such anisotropic transformations as Andreev-Klushin's methods of anticlinal and terrace types, anisotropic averaging and anisotropic difference averaging. The research allowed us to perform study of the geological informative value of anisotropic transformations of potential fields on theoretical and practical examples. It is shown that in the morphology of anisotropic gravitational and magnetic anomalous fields in the south-east of the Ukrainian Carpathians long local anomalies are traced. They are caused by fault tectonics, in particular deep longitudinal and transverse faults, as well as linear complications into sedimentary cover. The analysis of anisotropic anomalous fields reveals a number of characteristic features of large tectonic zones reflecting regional behavior of the foundation surface and deep faults; on its basis fault tectonics schemes of the South-Eastern region of the Ukrainian Carpathians can be constructed. The study traced a significant extension of the foundation of the Eastern European platform from the Maidan's ledge and the Pokutsko-Bukovynian Carpathians under the Folded Carpathians. The definition of a number of anisotropic transformations is given and their properties are considered. The work substantiated geological informative value of the anisotropic transformations morphology of potential fields in the study of the Ukrainian Carpathians and adjacent depressions fault tectonics. The use of anisotropic transformations of potential fields will increase the reliability and detail of tracing deep faults, as well as other linear dislocations both in the foundation and in the sedimentary cover. The study of fault tectonics is an important factor in the successful solution of problems in the search and exploration of areas which are promising for oil and gas deposits.


2020 ◽  
Vol 1 (182) ◽  
pp. 40-51
Author(s):  
Оleksiy BARTASHCHUK

The article concludes the trilogy on post-strip deformations of the Dnieper-Donets Basin. The results of tectonophysical analysis of collision deformations of the platform cover of the south-eastern part of the Dnieper-Donets Basin are summarized. Using the original method of reconstruction of stress and strain fields and tectonophysical analysis of geostructures, the system organization of inversion structural deformations of the Dnieper-Donets Basin and Donbass was studied. The tectonic inversion of the Dnieper-Donets Basin began in the Late Hercynian epoch in the situation of a general-plate collision under the influence of the inversion rise of the Donbas. Structural and kinematic analysis of deformations shows that the folds in the depression and linear anti- and synforms of the Donets Foldbelt were formed by the natural mechanism of longitudinal bending as a result of collisional warping of horizons in the geodynamic mode of transformation. In the late Mesozoic–­­Cenozoic inversion continued in the field of right-hand horizontal-shear deformations with a variable compressive component. This mode caused the advancing and pushing of sedimentary geomass from the Donets Foldbelt to the Hercynian neo-autochthonous and syneclise autochthonous of the South-Eastern Dnieper-Donets Basin. Due to the influence of the tectonic stamp of the Donets Foldbelt, the West Donets wedge-shaped segment was formed – the orocline of geomass tectonic wedging. Geodynamic bands of injection and displacement of sedimentary geomass were formed in the front of the invasion and in the axial zone of the orocline, where the main folded zones were formed. In Forland, at the ends of the main thrusts – “tectonic rails” of the wedging, an advanced scaly compression fan was formed. In the hinterland of the orocline, folded suture zones are formed by the roots of the covers of thrusting. The original geodynamic model of tectonic inversion provides for the destruction of the riftogenic structure in the Southeast of the Dnieper-Donets Basin by thrusting echelons of scaly covers and coulisses-articulated upliftt-folding. They compose a segment of the insertion of the geomasses of the Paleozoic cover into the territory of the West Donets Graben from the side of the Donets Foldbelt. The intrusion of the tectonic segment led to the formation of an inversion structure of a regional scale – the West Donets Cover-Folded Region.


2019 ◽  
Vol 3 (180) ◽  
pp. 76-89
Author(s):  
Оleksiy Bartashchuk

The article is the first part of a trilogy devoted to the study of post-rift deformations of the riftogenic structure of the Dnieper-Donets paleorift. The mechanisms of collision warping of the horizons of the sedimentary cover of the southeastern part of the Dnieper-Donets depression are considered. According to the previous mapping data, the tectonic deformations of the sedimentary cover were controlled by systems of faults of the north, north-west, and south-east vergence. The lattices of tectonites of the Hercynian, Lamaric, and Attic generations determine the specific “cross-thrust” structure of pushing. Overthrusts and linear folding of three generations permeate the sedimentary sequence of the transition zone from east to west for hundreds of kilometers within the eastern part of Izyumsky paleorift segment. The analytical base of the research was the materials of geological mapping of the zone of the junction of the depression with the Donets fold structure. Using field definitions of the tectonite vergency of the Hercynian, Laramide and Attic phases of tectogenesis, the original method of reconstruction of tectonic deformation fields and tectonophysics analysis of structures, collision deformations of the sedimentary cover of the south-eastern part of the Dnieper-Donets paleorift are studied. The tectonophysical analysis of tectonites of different ages indicates that together they control the cover-thrust and folded deformations of the riftogenic structure. Overthrusts and linear reverse-folding of three generations form the West-Donetsk integumentary-folding region, within which a segment of the same name tectonic thrust is distinguished. By pushing the system of repeatedly deformed, crushed into folds of geomass sedimentary rocks on weakly deployed syneclise deposits, the riftogenic structure of the south-eastern part of the basin is completely destroyed. The structural-tectonic framework of the allochthone, pushed from the side of the Donets structure, is composed of dynamically conjugated lattices of Hercynian, Laramide, and Attic tectonites. They control the echelon backstage of linear reverse-folds, tectonic plate-covers of transverse extrusion of sedimentary geomass from axial to airborne zones and folded covers of longitudinal thrust from the south-east. The riftogenic structure of the transition zone between the Dnieper-Donets basin and the Donets folded structure was completely destroyed by deformations of three generations of platform activation. The dynamically coupled tectonite lattice, the overlays, and the folded zones of the Hercynian, Laramide, and Attic generations jointly form the West-Donets fold-fold region within its boundaries. The main tectonic element of the area is the eponymous subregional tectonic thrust segment. The central structural zone is Veliko-Kamyshevakhskaya, Novotroitskaya, Druzhkovsko-Konstantinovskaya and Main anticlines. The central zone divides the body of the segment into two tectonic regions according to the tectonic style and intensity of deformation of the sedimentary sequence. The northern part is occupied by the Luhansk-Kamyshevakhsky region of the rocky-layered linear folding of the thrust, and the southern part is the Kalmius-Toretsky region of scaly tectonic covers.


Georesursy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 40-48 ◽  
Author(s):  
Renat Kh. Muslimov ◽  
Irina N. Plotnikova

The article is devoted to the problem of replenishing of oil reserves and considers it (the problem) in the aspect of deep degassing of the Earth. Based on an analysis of the results of a long-term study of the Precambrian crystalline basement in the territory of Tatarstan and adjacent areas, a number of new criteria are formulated that allow us to identify the processes of deep degassing of the Earth within the studied region. The article provides a brief overview of current views on the problem of replenishing oil reserves, considers options for possible sources and the mechanism of replenishment of hydrocarbons in the developed deposits. The arguments in favor of the modern process of deep degassing within the South Tatar arch and adjacent territories are examined, which are unequivocally confirmed by: the dynamics of the hydrochemical parameters of the deep waters of the crystalline basement obtained in the monitoring mode at five deep wells; uneven heat flux and its anomalies, recorded according to many years of research under the guidance of N.N. Khristoforova. The degassing processes are also confirmed by the dynamics of gas saturation of decompressed zones of the crystalline basement recorded in well 20009-Novoelkhovskaya, the dynamics of gas saturation of oil of the sedimentary cover and the composition of the gas dissolved in it, identified by oil studies in piezometric wells located in different areas of the Romashkinskoye field; the seismicity of the territory of Tatarstan, as well as its neotectonic activity. As criteria proving the existence of a process of replenishing the reserves of the developed oil fields of the South Tatar Arch, the features of the deep structure of the earth’s crust according to seismic data, as well as the results of geochemical studies of oils are considered.


Author(s):  
Е.А. Данилова

В 2021 году А.А. Драгуновым при помощи системно-геодинамического дешифрирования были выявлены Восточно-Оренбургский и Западно-Оренбургский геодинамически активные очаги генерации углеводородов Оренбургского нефтегазоконденсатного месторождения. Было предположено, что ряд малых залежей юго-запада Оренбургской области также получают от них подпитку. Целью представленной работы являлась попытка проследить вышеуказанные очаги генерации углеводородов в фундаменте и осадочном чехле на основе переинтерпретации временных разрезов региональных сейсмических профилей. Методы работы. Выделение тектонических нарушений проводилось вручную с применением авторских методических приемов приближений и последовательной детализации. После чего выполнялось системное обобщение и анализ полученных результатов в свете перспектив нефтегазоносности юго-запада Оренбургской области. Результаты работы. В результате работ было рассмотрено глубинное строение очагов, отмечены сейсмогеологические особенности их обнаружения. В местах картирования очагов генерации на временных разрезах зафиксированы неотектонические разломы «цветкового» типа, хаотическая вертикально направленная локально усиленная сейсмическая запись под ними ниже отражающего горизонта, отождествляемого с породами фундамента. Прослежена связь глубинных разломов и связанных с ними новейших оперяющих разломов с солянокупольными структурами кунгурского возраста. По результатам комплексного геологического анализа структурных построений выявлена схематическая сеть неотектонических разломов фундамента, судя по которой, Оренбургское нефтегазоконденсатное месторождение и другие, более мелкие месторождения углеводородов и выявленные сейсморазведочными работами структуры юго-запада Оренбургской области имеют закономерное распределение внутри крупной радиально-концентрической структуры диаметром около 180 км. Данная структура, вероятно, представляет собой зону разуплотнения в фундаменте, в пределах которой в осадочном чехле образовались перспективные в плане нефтегазоносности структуры. Уникальное и самое крупное в пределах юго-запада Оренбургской области Оренбургское месторождение находится в центре макроструктуры, являясь, возможно, результатом работы главных очагов генерации УВ в фундаменте. Вдоль радиальных и концентрических разломов сосредоточены более мелкие месторождения углеводородов. Кроме того, Оренбургское месторождение приурочено к зоне наложения двух концентров, что, возможно, является значительным фактором при обнаружении крупных месторождений. В качестве выводов даны рекомендации для дальнейших исследований и поиска возможных геодинамически активных очагов генерации углеводородов в пределах Русской платформы In 2021, A.A. Dragunov, using system-geodynamic decoding, identified the East-Orenburg and West-Orenburg geodynamically active centers of hydrocarbon generation of the Orenburg oil and gas condensate field. It was assumed that a number of small deposits in the south-west of the Orenburg region also receive recharge from them. The aim of the presented work was an attempt to trace the above-mentioned sources of hydrocarbon generation in the foundation and sedimentary cover on the basis of reinterpretation of time sections of regional seismic profiles. Methods. The selection of tectonic disturbances was carried out manually using the author's methodological techniques of approximations and sequential detailing. After that, a systematic generalization and analysis of the results obtained was carried out in the light of the prospects for oil and gas potential of the south-west of the Orenburg region. Results. As a result of the work, the deep structure of the foci was considered, the seismogeological features of their detection were noted. Neotectonic faults of the "flower" type, chaotic vertically directed locally enhanced seismic recording under them below the reflecting horizon identified with the basement rocks were recorded in the places of mapping the generation centers on time sections. The connection of deep faults and the newest feathering faults associated with them with salt-dome structures of the Kungur age is traced. According to the results of a comprehensive geological analysis of structural structures, a schematic network of neotectonic basement faults has been identified, judging by which the Orenburg oil and gas condensate field and other smaller hydrocarbon deposits and the structures identified by seismic surveys in the southwest of the Orenburg region have a regular distribution within a large radial-concentric structure with a diameter of about 180 km. This structure probably represents a zone of decompression in the foundation, within which promising structures in terms of oil and gas potential were formed in the sedimentary cover. The Orenburg deposit, which is unique and the largest within the south-west of the Orenburg Region, is located in the center of the macrostructure, possibly being the result of the work of the main centers of HC generation in the foundation. Smaller hydrocarbon deposits are concentrated along the radial and concentric faults. In addition, the Orenburg field is confined to the zone of overlap of two concenters, which is probably a significant factor in the discovery of large deposits. As conclusions, recommendations are given for further research and search for possible geodynamically active centers of hydrocarbon generation within the Russian platform.


Sign in / Sign up

Export Citation Format

Share Document