Zero-Sum Matrix Games

Author(s):  
João P. Hespanha

This chapter discusses a number of key concepts for zero-sum matrix games. A zero-sum matrix game is played by two players, each with a finite set of actions. Player 1 wants to minimize the outcome and Player 2 wants to maximize it. After providing an overview of how zero-sum matrix games are played, the chapter considers the security levels and policies involved and how they can be computed using MATLAB. It then examines the case of a matrix game with alternate play and one with simultaneous play to determine whether rational players will regret their decision to play a security policy. It also describes the saddle-point equilibrium and its relation to the security levels for the two players, as well as the order interchangeability property and computational complexity of a matrix game before concluding with a practice exercise with the corresponding solution and an additional exercise.

Author(s):  
João P. Hespanha

This chapter explores the concept of mixed policies and how the notions for pure policies can be adapted to this more general type of policies. A pure policy consists of choices of particular actions (perhaps based on some observation), whereas a mixed policy involves choosing a probability distribution to select actions (perhaps as a function of observations). The idea behind mixed policies is that the players select their actions randomly according to a previously selected probability distribution. The chapter first considers the rock-paper-scissors game as an example of mixed policy before discussing mixed action spaces, mixed security policy and saddle-point equilibrium, mixed saddle-point equilibrium vs. average security levels, and general zero-sum games. It concludes with practice exercises with corresponding solutions and an additional exercise.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 305 ◽  
Author(s):  
M. G. Brikaa ◽  
Zhoushun Zheng ◽  
El-Saeed Ammar

The intuitionistic fuzzy set (IFS) is applied in various decision-making problems to express vagueness and showed great success in realizing the day-to-day problems. The principal aim of this article is to develop an approach for solving multi-criteria matrix game with intuitionistic fuzzy (I-fuzzy) goals. The proposed approach introduces the indeterminacy resolving functions of I-fuzzy numbers and discusses the I-fuzzy inequalities concept. Then, an effective algorithm based on the indeterminacy resolving algorithm is developed to obtain Pareto optimal security strategies for both players through solving a pair of multi-objective linear programming problems constructed from two auxiliary I-fuzzy programming problems. It is shown that this multi-criteria matrix game with I-fuzzy goals is an extension of the multi-criteria matrix game with fuzzy goals. Moreover, two numerical simulations are conducted to demonstrate the applicability and implementation process of the proposed algorithm. Finally, the achieved numerical results are compared with the existing algorithms to show the advantages of our algorithm.


2017 ◽  
Vol 23 (6) ◽  
pp. 824-846 ◽  
Author(s):  
Mostafa KHANZADI ◽  
Zenonas TURSKIS ◽  
Gholamreza GHODRATI AMIRI ◽  
Alireza CHALEKAEE

Conflict between parties is a common issue in construction projects. In the present article, the conflicts be-tween contractor and employer in delayed Design-Bid-Build projects have been studied. Defining a case study, a dispute resolution method has been proposed. This case has been considered as a MCDM problem. This problem has been as-sumed as a discrete zero-sum two-person matrix game with grey numbers. Among the four alternatives available for con-tractor and employer in the proposed case study, termination is the last alternative that decision makers choose. Based on different risk values, authors determined the optimal solution for both parties. This article integrates some linguistic criteria together with time and cost, providing the better conditions to avoid lengthy bargaining.


Author(s):  
João P. Hespanha

This chapter defines a number of key concepts for non-zero-sum games involving two players. It begins by considering a two-player game G in which two players P₁ and P₂ are allowed to select policies within action spaces Γ‎₁ and Γ‎₂, respectively. Each player wants to minimize their own outcome, and does not care about the outcome of the other player. The chapter proceeds by discussing the security policy and Nash equilibrium for two-player non-zero-sum games, bimatrix games, admissible Nash equilibrium, and mixed policy. It also explores the order interchangeability property for Nash equilibria in best-response equivalent games before concluding with practice exercises and their corresponding solutions, along with additional exercises.


2016 ◽  
Vol 33 (06) ◽  
pp. 1650047 ◽  
Author(s):  
Sanjiv Kumar ◽  
Ritika Chopra ◽  
Ratnesh R. Saxena

The aim of this paper is to develop an effective method for solving matrix game with payoffs of trapezoidal fuzzy numbers (TrFNs). The method always assures that players’ gain-floor and loss-ceiling have a common TrFN-type fuzzy value and hereby any matrix game with payoffs of TrFNs has a TrFN-type fuzzy value. The matrix game is first converted to a fuzzy linear programming problem, which is converted to three different optimization problems, which are then solved to get the optimum value of the game. The proposed method has an edge over other method as this focuses only on matrix games with payoff element as symmetric trapezoidal fuzzy number, which might not always be the case. A numerical example is given to illustrate the method.


2016 ◽  
Vol 26 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Sandeep Kumar

In this paper, we consider a multi-objective two person zero-sum matrix game with fuzzy goals, assuming that each player has a fuzzy goal for each of the payoffs. The max-min solution is formulated for this multi-objective game model, in which the optimization problem for each player is a linear programming problem. Every developed model for each player is demonstrated through a numerical example.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Robert Fabac ◽  
Danijel Radošević ◽  
Ivan Magdalenić

When considering strategic games from the conceptual perspective that focuses on the questions of participants’ decision-making rationality, the very issues of modelling and simulation are rarely discussed. The well-known Rational Pigs matrix game has been relatively intensively analyzed in terms of reassessment of the logic of two players involved in asymmetric situations as gluttons that differ significantly by their attributes. This paper presents a successful attempt of using autogenerator for creating the framework of the game, including the predefined scenarios and corresponding payoffs. Autogenerator offers flexibility concerning the specification of game parameters, which consist of variations in the number of simultaneous players and their features and game objects and their attributes as well as some general game characteristics. In the proposed approach the model of autogenerator was upgraded so as to enable program specification updates. For the purpose of treatment of more complex strategic scenarios, we created the Rational Pigs Game Extended (RPGE), in which the introduction of a third glutton entails significant structural changes. In addition, due to the existence of particular attributes of the new player, “the tramp,” one equilibrium point from the original game is destabilized which has an influence on the decision-making of rational players.


Author(s):  
João P. Hespanha

This chapter discusses a number of key concepts for extensive form game representation. It first considers a matrix that defines a zero-sum matrix game for which the minimizer has two actions and the maximizer has three actions and shows that the matrix description, by itself, does not capture the information structure of the game and, in fact, other information structures are possible. It then describes an extensive form representation of a zero-sum two-person game, which is a decision tree, the extensive form representation of multi-stage games, and the notions of security policy, security level, and saddle-point equilibrium for a game in extensive form. It also explores the matrix form for games in extensive form, recursive computation of equilibria for single-stage games, feedback games, feedback saddle-point for multi-stage games, and recursive computation of equilibria for multi-stage games. It concludes with a practice exercise with the corresponding solution, along with additional exercises.


Sign in / Sign up

Export Citation Format

Share Document