Example Four: Facultative Anadromy in Salmonid Fishes

This chapter offers a fourth example model, with the objective of (1) illustrating the application of state- and prediction-based theory (SPT) to a new kind of decision—a life history decision—in a case where dynamic state variable modeling (DSVM) has been applied successfully; and (2) describing the unique ability of models utilizing SPT to address population-level questions of particular interest to conservationists and managers. In this case, SPT produced individual-level decisions similar to those of DSVM, but including them in a population-level model led to quite different conclusions than those implied by the individual-level DSVM analysis. Salmonid fishes exhibit amazing life history diversity. One fundamental distinction among salmonid life histories is whether or not individuals migrate to the ocean. In general, facultative anadromy can be seen as an adaptive behavior that trades off the fitness benefits of going to the ocean versus those of remaining resident. The anadromy versus residency decision is important to fish conservation and resource management.

2020 ◽  
Vol 47 (2) ◽  
pp. 224-234
Author(s):  
Charlotte Probst ◽  
Tuong Manh Vu ◽  
Joshua M. Epstein ◽  
Alexandra E. Nielsen ◽  
Charlotte Buckley ◽  
...  

Background. By defining what is “normal,” appropriate, expected, and unacceptable, social norms shape human behavior. However, the individual-level mechanisms through which social norms impact population-level trends in health-relevant behaviors are not well understood. Aims. To test the ability of social norms mechanisms to predict changes in population-level drinking patterns. Method. An individual-level model was developed to simulate dynamic normative mechanisms and behavioral rules underlying drinking behavior over time. The model encompassed descriptive and injunctive drinking norms and their impact on frequency and quantity of alcohol use. A microsynthesis initialized in 1979 was used as a demographically representative synthetic U.S. population. Three experiments were performed in order to test the modelled normative mechanisms. Results. Overall, the experiments showed limited influence of normative interventions on population-level alcohol use. An increase in the desire to drink led to the most meaningful changes in the population’s drinking behavior. The findings of the experiments underline the importance of autonomy, that is, the degree to which an individual is susceptible to normative influence. Conclusion. The model was able to predict theoretically plausible changes in drinking patterns at the population level through the impact of social mechanisms. Future applications of the model could be used to plan norms interventions pertaining to alcohol use as well as other health behaviors.


2018 ◽  
Author(s):  
Jacques A. Deere ◽  
Ilona van den Berg ◽  
Gregory Roth ◽  
Isabel M. Smallegange

AbstractDispersal is an important form of movement influencing population dynamics, species distribution, and gene flow between populations. In population models, dispersal is often included in a simplified manner by removing a random proportion of the population. Many ecologists now argue that models should be formulated at the level of individuals instead of the population-level. To fully understand the effects of dispersal on natural systems, it is therefore necessary to incorporate individual-level differences in dispersal behaviour in population models. Here we parameterised an integral projection model (IPM), which allows for studying how individual life histories determine population-level processes, using bulb mites, Rhizoglyphus robini, to assess to what extent dispersal expression (frequency of individuals in the dispersal stage) and dispersal probability affect the proportion of dispersers and natal population growth rate. We find that allowing for life-history differences between resident phenotypes and disperser phenotypes shows that multiple combinations of dispersal probability and dispersal expression can produce the same proportion of leaving individuals. Additionally, a given proportion of dispersing individuals results in different natal population growth rates. The results highlight that dispersal life histories, and the frequency with which disperser phenotypes occur in the natal population, significantly affect population-level processes. Thus, biological realism of dispersal population models can be increased by incorporating the typically observed life history differences between resident phenotypes and disperser phenotypes, and we here present a methodology to do so.


2013 ◽  
Vol 59 (4) ◽  
pp. 485-505 ◽  
Author(s):  
Jon E. Brommer

Abstract Individual-based studies allow quantification of phenotypic plasticity in behavioural, life-history and other labile traits. The study of phenotypic plasticity in the wild can shed new light on the ultimate objectives (1) whether plasticity itself can evolve or is constrained by its genetic architecture, and (2) whether plasticity is associated to other traits, including fitness (selection). I describe the main statistical approach for how repeated records of individuals and a description of the environment (E) allow quantification of variation in plasticity across individuals (IxE) and genotypes (GxE) in wild populations. Based on a literature review of life-history and behavioural studies on plasticity in the wild, I discuss the present state of the two objectives listed above. Few studies have quantified GxE of labile traits in wild populations, and it is likely that power to detect statistically significant GxE is lacking. Apart from the issue of whether it is heritable, plasticity tends to correlate with average trait expression (not fully supported by the few genetic estimates available) and may thus be evolutionary constrained in this way. Individual-specific estimates of plasticity tend to be related to other traits of the individual (including fitness), but these analyses may be anti-conservative because they predominantly concern stats-on-stats. Despite the increased interest in plasticity in wild populations, the putative lack of power to detect GxE in such populations hinders achieving general insights. I discuss possible steps to invigorate the field by moving away from simply testing for presence of GxE to analyses that ‘scale up’ to population level processes and by the development of new behavioural theory to identify quantitative genetic parameters which can be estimated.


2017 ◽  
Author(s):  
Alex Mesoudi

AbstractHow do migration and acculturation (i.e. psychological or behavioral change resulting from migration) affect within- and between-group cultural variation? Here I answer this question by drawing analogies between genetic and cultural evolution. Population genetic models show that migration rapidly breaks down between-group genetic structure. In cultural evolution, however, migrants or their descendants can acculturate to local behaviors via social learning processes such as conformity, potentially preventing migration from eliminating between-group cultural variation. An analysis of the empirical literature on migration suggests that acculturation is common, with second and subsequent migrant generations shifting, sometimes substantially, towards the cultural values of the adopted society. Yet there is little understanding of the individual-level dynamics that underlie these population-level shifts. To explore this formally, I present models quantifying the effect of migration and acculturation on between-group cultural variation, for both neutral and costly cooperative traits. In the models, between-group cultural variation, measured using F statistics, is eliminated by migration and maintained by conformist acculturation. The extent of acculturation is determined by the strength of conformist bias and the number of demonstrators from whom individuals learn. Acculturation is countered by assortation, the tendency for individuals to preferentially interact with culturally-similar others. Unlike neutral traits, cooperative traits can additionally be maintained by payoff-biased social learning, but only in the presence of strong sanctioning institutions. Overall, the models show that surprisingly little conformist acculturation is required to maintain realistic amounts of between-group cultural diversity. While these models provide insight into the potential dynamics of acculturation and migration in cultural evolution, they also highlight the need for more empirical research into the individual-level learning biases that underlie migrant acculturation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Hernández-Orallo ◽  
Bao Sheng Loe ◽  
Lucy Cheke ◽  
Fernando Martínez-Plumed ◽  
Seán Ó hÉigeartaigh

AbstractSuccess in all sorts of situations is the most classical interpretation of general intelligence. Under limited resources, however, the capability of an agent must necessarily be limited too, and generality needs to be understood as comprehensive performance up to a level of difficulty. The degree of generality then refers to the way an agent’s capability is distributed as a function of task difficulty. This dissects the notion of general intelligence into two non-populational measures, generality and capability, which we apply to individuals and groups of humans, other animals and AI systems, on several cognitive and perceptual tests. Our results indicate that generality and capability can decouple at the individual level: very specialised agents can show high capability and vice versa. The metrics also decouple at the population level, and we rarely see diminishing returns in generality for those groups of high capability. We relate the individual measure of generality to traditional notions of general intelligence and cognitive efficiency in humans, collectives, non-human animals and machines. The choice of the difficulty function now plays a prominent role in this new conception of generality, which brings a quantitative tool for shedding light on long-standing questions about the evolution of general intelligence and the evaluation of progress in Artificial General Intelligence.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chao Li ◽  
Hugh Barclay ◽  
Bernard Roitberg ◽  
Robert Lalonde

Compensatory growth has been observed in forests, and it also appears as a common phenomenon in biology. Though it sometimes takes different names, the essential meanings are the same, describing the accelerated growth of organisms when recovering from a period of unfavorable conditions such as tissue damage at the individual level and partial mortality at the population level. Diverse patterns of compensatory growth have been reported in the literature, ranging from under-, to compensation-induced-equality, and to over-compensation. In this review and synthesis, we provide examples of analogous compensatory growth from different fields, clarify different meanings of it, summarize its current understanding and modeling efforts, and argue that it is possible to develop a state-dependent model under the conceptual framework of compensatory growth, aimed at explaining and predicting diverse observations according to different disturbances and environmental conditions. When properly applied, compensatory growth can benefit different industries and human society in various forms.


2021 ◽  
Vol 9 ◽  
Author(s):  
Abel Bernadou ◽  
Boris H. Kramer ◽  
Judith Korb

The evolution of eusociality in social insects, such as termites, ants, and some bees and wasps, has been regarded as a major evolutionary transition (MET). Yet, there is some debate whether all species qualify. Here, we argue that worker sterility is a decisive criterion to determine whether species have passed a MET (= superorganisms), or not. When workers are sterile, reproductive interests align among group members as individual fitness is transferred to the colony level. Division of labour among cooperating units is a major driver that favours the evolution of METs across all biological scales. Many METs are characterised by a differentiation into reproductive versus maintenance functions. In social insects, the queen specialises on reproduction while workers take over maintenance functions such as food provisioning. Such division of labour allows specialisation and it reshapes life history trade-offs among cooperating units. For instance, individuals within colonies of social insects can overcome the omnipresent fecundity/longevity trade-off, which limits reproductive success in organisms, when increased fecundity shortens lifespan. Social insect queens (particularly in superorganismal species) can reach adult lifespans of several decades and are among the most fecund terrestrial animals. The resulting enormous reproductive output may contribute to explain why some genera of social insects became so successful. Indeed, superorganismal ant lineages have more species than those that have not passed a MET. We conclude that the release from life history constraints at the individual level is a important, yet understudied, factor across METs to explain their evolutionary success.


2018 ◽  
Vol 115 (29) ◽  
pp. 7545-7550 ◽  
Author(s):  
Erin E. Gorsich ◽  
Rampal S. Etienne ◽  
Jan Medlock ◽  
Brianna R. Beechler ◽  
Johannie M. Spaan ◽  
...  

Coinfecting parasites and pathogens remain a leading challenge for global public health due to their consequences for individual-level infection risk and disease progression. However, a clear understanding of the population-level consequences of coinfection is lacking. Here, we constructed a model that includes three individual-level effects of coinfection: mortality, fecundity, and transmission. We used the model to investigate how these individual-level consequences of coinfection scale up to produce population-level infection patterns. To parameterize this model, we conducted a 4-y cohort study in African buffalo to estimate the individual-level effects of coinfection with two bacterial pathogens, bovine tuberculosis (bTB) and brucellosis, across a range of demographic and environmental contexts. At the individual level, our empirical results identified bTB as a risk factor for acquiring brucellosis, but we found no association between brucellosis and the risk of acquiring bTB. Both infections were associated with reductions in survival and neither infection was associated with reductions in fecundity. The model reproduced coinfection patterns in the data and predicted opposite impacts of coinfection at individual and population scales: Whereas bTB facilitated brucellosis infection at the individual level, our model predicted the presence of brucellosis to have a strong negative impact on bTB at the population level. In modeled populations where brucellosis was present, the endemic prevalence and basic reproduction number (R0) of bTB were lower than in populations without brucellosis. Therefore, these results provide a data-driven example of competition between coinfecting pathogens that occurs when one pathogen facilitates secondary infections at the individual level.


Author(s):  
Ken H. Andersen

This chapter develops descriptions of how individuals grow and reproduce. More specifically, the chapter seeks to determine the growth and reproduction rates from the consumption rate, by developing an energy budget of the individual as a function of size. To that end, the chapter addresses the question of how an individual makes use of the energy acquired from consumption. It sets up the energy budgets of individuals by formulating the growth model using so-called life-history invariants, which are parameters that do not vary systematically between species. While the formulation of the growth model in terms of life-history invariants is largely successful, there is in particular one parameter that is not invariant between life histories: the asymptotic size (maximum size) of individuals in the population. This parameter plays the role of a master trait that characterizes most of the variation between life histories.


This chapter outlines the guidance on using state- and prediction-based theory (SPT) to build models of populations and communities of adaptive individuals, detailing five steps unique to SPT. The most important aspect of SPT to remember is that one is not trying to build optimal, or even necessarily accurate, models of how an organism's behavior affects its future fitness. Instead, one is trying to find simplistic models that produce realistic behavior in contexts where optimization is impossible. While SPT can be used like dynamic state variable modeling (DSVM), as a framework for thinking about and modeling how an individual makes a particular decision, its main purpose is to model adaptive trade-off decisions in individual-based population models. Thus, using SPT is part of the larger process of developing, analyzing, and applying an IBM to address population-level questions, and the five steps therefore include that process.


Sign in / Sign up

Export Citation Format

Share Document