scholarly journals Study on free oscillations of a micromechanical gyroscope taking into account the nonorthogonality of the torsion axes

2021 ◽  
Vol 21 (3) ◽  
pp. 231-238
Author(s):  
M. R. Saypulaev ◽  
I. V. Merkuryev ◽  
A. V. Solovyev ◽  
A. N. Tarasov

Introduction. The paper is devoted to the study on free oscillations of the sensing element of a micromechanical R-Rtype gyroscope of frame construction developed by the Kuznetsov Research Institute of Applied Mechanics, taking into account the nonorthogonality of the torsion axes. The influence of the instrumental manufacturing error on the accuracy of a gyroscope on a movable base in the case of free oscillations is studied. The work objective was to improve the device accuracy through developing a mathematical model of an R-R type micromechanical gyroscope, taking into account the nonorthogonality of the torsion axes, and to study the influence of this error on the device accuracy. The urgency of the problem of increasing the accuracy of micromechanical gyroscopes is associated with improving the accuracy of inertial navigation systems based on micromechanical sensors.Materials and Methods. A new mathematical model that describes the gyroscope dynamics, taking into account the instrumental error of manufacturing the device, and a formula for estimating the error of a gyroscope, are proposed. The dependences of the state variables obtained from the results of modeling and on the basis of the experiment are presented. Methods of theoretical mechanics and asymptotic methods, including the Lagrange formalism and the Krylov-Bogolyubov averaging method, were used in the research.Results. A new mathematical model of the gyroscope dynamics, taking into account the nonorthogonality of the torsion axes, is developed. The solution to the equations of small oscillations of the gyroscope sensing element and the estimate of the precession angle for the case of a movable base are obtained. A comparative analysis of the developed model and the experimental data obtained in the case of free oscillations of the gyroscope sensing element with a fixed base is carried out. The analysis has confirmed the adequacy of the constructed mathematical model. Analytical expressions are formed. They demonstrate the fact that the nonorthogonality of the torsion axes causes a cross-influence of the amplitudes of the primary vibrations on the amplitudes of the secondary vibrations of the sensing element, and the appearance of an additional error in the angular velocity readings when the gyroscope is operating in free mode.Discussion and Conclusions. The results obtained can be used to improve the device accuracy using the algorithm for analytical compensation of the gyroscope error and the method for identifying the mathematical model parameters.

2012 ◽  
Vol 220-223 ◽  
pp. 952-957
Author(s):  
Chen Liu ◽  
Xiao Yan Liu

From the view of engineering, based on expatiating the features of systems biology, the paper discusses the workflows and the research emphasis of systems biology. It also explains how to model and analyze the dynamic process of signal transmitting network for a biological system by an example. Based on the complexity and uncertainty of the mathematical model, the right methods are chosen to realize the effective estimation of state variables and model parameters for the biochemical pathway.


2021 ◽  
Vol 22 (9) ◽  
pp. 451-458
Author(s):  
A. A. Bobtsov ◽  
R. Ortega ◽  
N. A. Nikolaev ◽  
O. V. Slita ◽  
O. A. Kozachek ◽  
...  

In this paper the solution was proposed for the state variables estimation problem in the mathematical model of the DC switch-mode power converter built according to the Ćuk scheme. Pulse converters are one of the main components of most modern electrical devices and the circuit proposed by Slobodan Ćuk in the 70s of the 20th century is still relevant and demanded. Traditionally, PI (proportional-integral) controllers or proportional-integral adaptive control algorithm (PI-PBC), based on passification methods and superior to standard PI controllers in accuracy, are used as the control algorithm for power converters. However, you need to know the entire vector of the state variables of the converter to build a PI-PBC controller, and moreover, all its parameters must be accurately known. Unfortunately, in practice, such assumptions are not fulfilled, since parametric drifting is possible, and measurements of the converter’s state require additional sensors, which in some cases does not justify itself. Thus, there is a need to develop additional observers or estimators that allow obtaining data on all variables of the converter, as well as its parameters. The solution is based on the GPEBO method (generalized parameter estimation-based observers). The problem was solved under assumption that only the output signal (the output voltage of the converter) is measurable and some of the mathematical model parameters are unknown. An important aspect of the observer design is the development of an algorithm for unknown parameters and the state vector of a mathematical model estimation that ensures convergence in a finite time. Finite-time convergence is extremely important when designing observers since transients in pulse converters occur very quickly.


Author(s):  
Marcello Pericoli ◽  
Marco Taboga

Abstract We propose a general method for the Bayesian estimation of a very broad class of non-linear no-arbitrage term-structure models. The main innovation we introduce is a computationally efficient method, based on deep learning techniques, for approximating no-arbitrage model-implied bond yields to any desired degree of accuracy. Once the pricing function is approximated, the posterior distribution of model parameters and unobservable state variables can be estimated by standard Markov Chain Monte Carlo methods. As an illustrative example, we apply the proposed techniques to the estimation of a shadow-rate model with a time-varying lower bound and unspanned macroeconomic factors.


2017 ◽  
Vol 65 (4) ◽  
pp. 479-488 ◽  
Author(s):  
A. Boboń ◽  
A. Nocoń ◽  
S. Paszek ◽  
P. Pruski

AbstractThe paper presents a method for determining electromagnetic parameters of different synchronous generator models based on dynamic waveforms measured at power rejection. Such a test can be performed safely under normal operating conditions of a generator working in a power plant. A generator model was investigated, expressed by reactances and time constants of steady, transient, and subtransient state in the d and q axes, as well as the circuit models (type (3,3) and (2,2)) expressed by resistances and inductances of stator, excitation, and equivalent rotor damping circuits windings. All these models approximately take into account the influence of magnetic core saturation. The least squares method was used for parameter estimation. There was minimized the objective function defined as the mean square error between the measured waveforms and the waveforms calculated based on the mathematical models. A method of determining the initial values of those state variables which also depend on the searched parameters is presented. To minimize the objective function, a gradient optimization algorithm finding local minima for a selected starting point was used. To get closer to the global minimum, calculations were repeated many times, taking into account the inequality constraints for the searched parameters. The paper presents the parameter estimation results and a comparison of the waveforms measured and calculated based on the final parameters for 200 MW and 50 MW turbogenerators.


2020 ◽  
pp. 1-11
Author(s):  
Hui Wang ◽  
Huang Shiwang

The various parts of the traditional financial supervision and management system can no longer meet the current needs, and further improvement is urgently needed. In this paper, the low-frequency data is regarded as the missing of the high-frequency data, and the mixed frequency VAR model is adopted. In order to overcome the problems caused by too many parameters of the VAR model, this paper adopts the Bayesian estimation method based on the Minnesota prior to obtain the posterior distribution of each parameter of the VAR model. Moreover, this paper uses methods based on Kalman filtering and Kalman smoothing to obtain the posterior distribution of latent state variables. Then, according to the posterior distribution of the VAR model parameters and the posterior distribution of the latent state variables, this paper uses the Gibbs sampling method to obtain the mixed Bayes vector autoregressive model and the estimation of the state variables. Finally, this article studies the influence of Internet finance on monetary policy with examples. The research results show that the method proposed in this article has a certain effect.


2021 ◽  
Vol 22 (8) ◽  
pp. 404-410
Author(s):  
K. B. Dang ◽  
A. A. Pyrkin ◽  
A. A. Bobtsov ◽  
A. A. Vedyakov ◽  
S. I. Nizovtsev

The article deals with the problem of state observer design for a linear time-varying plant. To solve this problem, a number of realistic assumptions are considered, assuming that the model parameters are polynomial functions of time with unknown coefficients. The problem of observer design is solved in the class of identification approaches, which provide transformation of the original mathematical model of the plant to a static linear regression equation, in which, instead of unknown constant parameters, there are state variables of generators that model non-stationary parameters. To recover the unknown functions of the regression model, we use the recently well-established method of dynamic regressor extension and mixing (DREM), which allows to obtain monotone estimates, as well as to accelerate the convergence of estimates to the true values. Despite the fact that the article deals with the problem of state observer design, it is worth noting the possibility of using the proposed approach to solve an independent and actual estimation problem of unknown time-varying parameters.


2008 ◽  
Vol 5 (3) ◽  
pp. 1641-1675 ◽  
Author(s):  
A. Bárdossy ◽  
S. K. Singh

Abstract. The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives an unique and very best parameter vector. The parameters of hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on the half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study) for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.


Author(s):  
Vladimir Grinkevich ◽  

The evaluation of the mathematical model parameters of a non-linear object with a transport delay is considered in this paper. A temperature controlled stage based on a Peltier element is an identification object in the paper. Several input signal implementations are applied to the input of the identification object. The least squares method is applied for the calculation of the non-linear differential equitation parameters which describe the identification object. The least squares method is used due to its simplicity and the possibility of identification non-linear objects. The parameters values obtained in the process of identification are provided. The plots of temperature changes in the temperature control system with a controller designed based on the mathematical model of the control object obtained as a result of identification are shown. It is found that the mathematical model obtained in the process of identification may be applied to design controllers for non-linear systems, in particular for a temperature stage based on a Peltier element, and for self-tuning controllers. However, the least square method proposed in the paper cannot estimate the transport delay time. Therefore it is required to evaluate the time delay by temperature transient processes. Dynamic object identification is applied when it is required to obtain a mathematical model structure and evaluate the parameters by an input and output control object signal. Also, identification is applied for auto tuning of controllers. A mathematical model of a control object is required to design the controller which is used to provide the required accuracy and stability of control systems. Peltier elements are applied to design low-power and small- size temperature stage . Hot benches based on a Peltier element can provide the desired temperature above and below ambient temperature.


1971 ◽  
Vol 69 (3) ◽  
pp. 423-433 ◽  
Author(s):  
B. J. Hammond ◽  
D. A. J. Tyrrell

SUMMARYRecords of seven common-cold outbreaks on the island of Tristan da Cunha are compared with the corresponding time courses given by the mathematical model of Kermack & McKendrick (1927) and with an alternative model that directly involves a constant average duration of individual infection. Using computer simulation techniques the latter model is shown to be preferred and is then closely matched to the field data to obtain values for the model parameters. Consideration is then given to the intensity of epidemics predicted by the model and to the distribution of the actual epidemics relative to the theoretical epidemic threshold.


Sign in / Sign up

Export Citation Format

Share Document