scholarly journals Pengaruh Tegangan Tabung terhadap Kualitas Citra pada Pemeriksaan Computed Tomography Kepala menggunakan Iterative Reconstruction

2021 ◽  
Vol 9 (1) ◽  
pp. 103-110
Author(s):  
Muhammad Irsal ◽  
◽  
Nurbaiti Nurbaiti ◽  
Aulia Narendra Mukhtar ◽  
Shinta Gunawati ◽  
...  

Iterative reconstruction can optimize radiation dose and improve image quality on CT scan. This research method is quantitative analytic with the analysis of the results of the head CT examination parameters associated with image quality to changes in variations of 80 kV, 100 kV, 120 kV with the use of iterative reconstruction. Image quality measurements are the Hounsfield Unit (HU) value, standard deviation, and Signal to Noise Ratio (SNR) using Radiant Viewers. Effective dose measurement using the Dose Length Product (DLP). Then perform the Kruskal Wallis test to find out whether there is an effect of tube voltage and Iterative Reconstruction on the SNR value using IBM SPSS version 24. The results image quality of the HU value increase due to changes in the kV value, but the value does not change significantly when the iDose changes, for the standard The deviation has decreased due to changes in kV, but the value of the value does not experience a significant change at the time of change in iDose, while SNR increases due to changes in kV value and changes in iDose. The percentage ratio of the effective dose in the use of standard kV with 80 kV decreased radiation dose by 62%, while at 100 kV there was a decrease of 25%, and the use of 120 kV experienced an increase of 25%. The results of the Kruskal Wallis test p-value <0.001, therefore it can be concluded that there is a difference in the SNR image quality at each change in iDose and kV parameters.

2018 ◽  
Vol 59 (10) ◽  
pp. 1247-1253 ◽  
Author(s):  
Paola Maria Cannaò ◽  
Francesco Secchi ◽  
Marco Alì ◽  
Ida Daniela D'Angelo ◽  
Marco Scarabello ◽  
...  

Background Cardiovascular computed tomography (CCT) technology is rapidly advancing allowing to perform good quality examinations with a radiation dose as low as 1.2 mSv. However, latest generation scanners are not available in all centers. Purpose To estimate radiation dose and image quality in pediatric CCT using a standard 64-slice scanner. Material and Methods A total of 100 patients aged 6.9 ± 5.4 years (mean ± standard deviation) who underwent a 64-slice CCT scan using 80, 100, or 120 kVp, were retrospectively evaluated. Radiation effective dose was calculated on the basis of the dose length product. Two independent readers assessed the image quality through signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and a qualitative score (3 = very good, 2 = good, 1 = poor). Non-parametric tests were used. Results Fifty-five exams were not electrocardiographically (ECG) triggered, 20 had a prospective ECG triggering, and 25 had retrospective ECG triggering. The median effective dose was 1.3 mSv (interquartile range [IQR] = 0.8–2.7 mSv). Median SNR was 30.6 (IQR = 23.4–33.6) at 120 kVp, 29.4 (IQR = 23.7–34.8) at 100 kVp, and 24.7 (IQR = 19.4–34.3) at 80 kVp. Median CNR was 21.0 (IQR = 14.8–24.4), 19.1 (IQR = 15.6–23.9), and 25.3 (IQR = 19.4–33.4), respectively. Image quality was very good, good, and poor in 56, 39, and 5 patients, respectively. No significant differences were found among voltage groups for SNR ( P = 0.486), CNR ( P = 0.336), and subjective image quality ( P = 0.296). The inter-observer reproducibility was almost perfect (κ = 0.880). Conclusion High-quality pediatric CCT can be performed using a 64-slice scanner, with a radiation effective dose close to 2 mSv in about 50% of the cases.


2018 ◽  
Vol 59 (12) ◽  
pp. 1458-1465 ◽  
Author(s):  
Stefan Haneder ◽  
Florian Siedek ◽  
Jonas Doerner ◽  
Gregor Pahn ◽  
Nils Grosse Hokamp ◽  
...  

Background A novel, multi-energy, dual-layer spectral detector computed tomography (SDCT) is commercially available now with the vendor’s claim that it yields the same or better quality of polychromatic, conventional CT images like modern single-energy CT scanners without any radiation dose penalty. Purpose To intra-individually compare the quality of conventional polychromatic CT images acquired with a dual-layer spectral detector (SDCT) and the latest generation 128-row single-energy-detector (CT128) from the same manufacturer. Material and Methods Fifty patients underwent portal-venous phase, thoracic-abdominal CT scans with the SDCT and prior CT128 imaging. The SDCT scanning protocol was adapted to yield a similar estimated dose length product (DLP) as the CT128. Patient dose optimization by automatic tube current modulation and CT image reconstruction with a state-of-the-art iterative algorithm were identical on both scanners. CT image contrast-to-noise ratio (CNR) was compared between the SDCT and CT128 in different anatomic structures. Image quality and noise were assessed independently by two readers with 5-point-Likert-scales. Volume CT dose index (CTDIvol), and DLP were recorded and normalized to 68 cm acquisition length (DLP68). Results The SDCT yielded higher mean CNR values of 30.0% ± 2.0% (26.4–32.5%) in all anatomic structures ( P < 0.001) and excellent scores for qualitative parameters surpassing the CT128 (all P < 0.0001) with substantial inter-rater agreement (κ ≥ 0.801). Despite adapted scan protocols the SDCT yielded lower values for CTDIvol (–10.1 ± 12.8%), DLP (−13.1 ± 13.9%), and DLP68 (–15.3 ± 16.9%) than the CT128 (all P < 0.0001). Conclusion The SDCT scanner yielded better CT image quality compared to the CT128 and lower radiation dose parameters.


Author(s):  
Chao Tian ◽  
Tian-hao Yang ◽  
Le-jun Fu ◽  
Song Jin

IntroductionObjective: This study aims to investigate the reduction of radiation dose in cerebral CT perfusion by lower low-tube current.Material and methodsTwo hundred patients, who underwent cerebral non-contrast computed tomography (CT) and CT perfusion, were randomized into four groups according to tube current and contrast media (CM) concentration: group A (60 mAs, 320 mgI/ml), group B (60 mAs, 370 mgI/ml), group C (100 mAs, 320 mgI/ml), and group D (100 mAs, 370 mgI/ml). Among these four groups, the CT dose index (CTDIvol), dose length product (DLP) and effective dose (ED) was calculated. The quantitative image comparison included maximum enhancement, noise, signal-to-noise ratio (SNR), cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) from five regions of interests (ROIs).ResultsRanging from 100 mAs to 60 mAs, groups A and B achieved 40% lower CTDIvol, DLP and ED, when compared with groups C and D. Both the maximum enhancement and noise of all ROIs were higher in groups A and B, when compared to groups C and D (P<0.05). The CBV values were higher in groups B and D, when compared to groups A and C (P<0.05). The image quality (IQ) of each group of perfusion maps met the requirements for imaging diagnosis.ConclusionsThe reduction in tube current from 100 mAs to 60 mAs for cerebral CT perfusion led to a 40% reduction in radiation dose without sacrificing image quality.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256564
Author(s):  
Jung Han Hwang ◽  
Jin Mo Kang ◽  
So Hyun Park ◽  
Suyoung Park ◽  
Jeong Ho Kim ◽  
...  

Objective We compared the image quality according to the radiation dose on computed tomography (CT) venography at 80 kVp using advanced modeled iterative reconstruction for deep vein thrombus and other specific clinical conditions considering standard-, low-, and ultralow-dose CT. Methods In this retrospective study, 105 consecutive CT venography examinations were included using a third-generation dual-source scanner in the dual-source mode in tubes A (reference mAs, 210 mAs at 70%) and B (reference mAs, 90 mAs at 30%) at a fixed 80 kVp. Two radiologists independently reviewed each observation of standard- (100% radiation dose), low- (70%), and ultralow-dose (30%) CT. The objective quality of large veins and subjective image quality regarding lower-extremity veins and deep vein thrombus were compared between images according to the dose. In addition, the CT dose index volumes were displayed from the images. Results From the patients, 24 presented deep vein thrombus in 69 venous segments of CT examinations. Standard-dose CT provided the lowest image noise at the inferior vena cava and femoral vein compared with low- and ultralow-dose CT (p < 0.001). There were no differences regarding subjective image quality between the images of popliteal and calf veins at the three doses (e.g., 3.8 ± 0.7, right popliteal vein, p = 0.977). The image quality of the 69 deep vein thrombus segments showed equally slightly higher scores in standard- and low-dose CT (4.0 ± 0.2) than in ultralow-dose CT (3.9 ± 0.4). The CT dose index volumes were 4.4 ± 0.6, 3.1 ± 0.4, and 1.3 ± 0.2 mGy for standard-, low-, and ultralow-dose CT, respectively. Conclusions Low- and ultralow-dose CT venography at 80 kVp using an advanced model based iterative reconstruction algorithm allows to evaluate deep vein thrombus and perform follow-up examinations while showing an acceptable image quality and reducing the radiation dose.


2018 ◽  
Vol 185 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Abdulaziz A Qurashi ◽  
Louise A Rainford ◽  
Khalid M Alshamrani ◽  
Shane J Foley

Abstract The aim of this study was to evaluate how iterative reconstruction can compensate for the noise increase in low radiation dose abdominal computed tomography (CT) technique for large size patients and the general impact of obesity on abdominal organ doses and image quality in CT. An anthropomorphic phantom layered with either none or a single layer of 3-cm- thick circumferential animal fat packs to simulate obese patients was imaged using a 128MDCT scanner. Abdominal protocols (n = 12) were applied using automatic tube current modulation (ATCM) with various quality reference mAs (150, 200, 250 and 300). kVs of 100, 120 and 140 were used for each mAs selection. Metal oxide semiconductor field effect transistor dosimeters (MOSFET) measured internal organ dose. All images produced were reconstructed with filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE) (3, 4 and 5) and objective noise was measured within three regions of interest at the level of L4–L5. Organ doses varied from 0.12 to 41.9 mGy, the spleen received the highest doses for both phantom sizes. Compared to the phantom simulating average size, the obese phantom was associated with up to twofold increase in delivered mAs, dose length product (DLP) and computed tomography dose index (CTDIvol) for the matched mAs selection (p < 0.05). However, organ dose increased by 50% only. The use of 100 kV resulted in a 40% lower dose (p < 0.05) compared to 120 kV and the associated noise increase was improved by SAFIRE (5) use, which resulted in 60% noise reduction compared to FBP (p < 0.05). When combined with iterative reconstruction, low kV is feasible for obese patients to optimise radiation dose and maintain objective image quality.


2015 ◽  
Vol 25 (5) ◽  
pp. 1453-1463 ◽  
Author(s):  
Guo Zhong Chen ◽  
Long Jiang Zhang ◽  
U. Joseph Schoepf ◽  
Julian L. Wichmann ◽  
Cole M. Milliken ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document